
Linux Loadable Kernel Module HOWTO

Bryan Henderson

01 June 2001

Revision History

Revision v1.00 2001−06−14 Revised by: bh

Initial release.

This is the HOWTO for Linux loadable kernel modules (LKMs). It explains what they are and how to use
and create them. It also includes documentation of parameters and other details of use of some particular
modules.

Table of Contents
1. Preface..1

2. Introduction to Linux Loadable Kernel Modules..2
2.1. Terminology..2
2.2. History of Loadable Kernel Modules...2
2.3. The Case For Loadable Kernel Modules..3
2.4. What LKMs Can't Do...3
2.5. What LKMs Are Used For..3

3. Making Loadable Kernel Modules..5

4. LKM Utilities...6

5. How To Insert And Remove LKMs ..7
5.1. Intelligent Loading Of LKMs − Modprobe..8
5.2. Kerneld..9
5.3. /proc/modules..9

6. LKM − Base Kernel Compatibility ...11

7. How To Boot Without A Disk Device Driver ...13

8. About Module Parameters...14

9. Persistent Data..15

10. Technical Details...16
10.1. How They Work...16
10.2. The .modinfo Section..16
10.3. The __ksymtab And .kstrtab Sections..17

11. Writing Your Own Loadable Kernel Module..18
11.1. Improving On Use Counts..18

12. Related Documentation..19

13. Individual Modules...20
13.1. Executable Interpreters...20

13.1.1. binfmt_aout: executable interpreter for a.out format..20
13.1.2. binfmt_elf: executable interpreter for ELF format...20
13.1.3. binfmt_java: executable interpreter for Java bytecode...21

13.2. Block Device Drivers..21
13.2.1. floppy: floppy disk driver...21
13.2.2. loop: loop device driver..25
13.2.3. linear: linear (non−RAID) disk array device driver..26
13.2.4. raid0: RAID−0 device driver..26
13.2.5. rd: ramdisk device driver..26
13.2.6. xd: XT disk device driver...27

Linux Loadable Kernel Module HOWTO

i

Table of Contents
13.3. SCSI Drivers...27

13.3.1. scsi_mod: SCSI mid−level driver...28
13.3.2. sd_mod: SCSI high−level driver for disk devices..28
13.3.3. st: SCSI high−level driver for tape devices..29
13.3.4. sr_mod: SCSI high−level driver for CD−ROM drives...29
13.3.5. sg: SCSI high−level driver for generic SCSI devices...29
13.3.6. wd7000: SCSI low−level driver for 7000FASST...29
13.3.7. aha154x: SCSI low−level driver for Adaptec AHA152X/2825...................................30
13.3.8. aha1542: SCSI low−level driver for Adaptec AHA1542...30
13.3.9. aha1740: SCSI low−level driver for Adaptec AHA1740 EISA...................................30
13.3.10. aic7xxx: SCSI low−level driver for Adaptec AHA274X/284X/294X.......................30
13.3.11. advansys: SCSI low−level driver for AdvanSys/Connect.com..................................31
13.3.12. in2000: SCSI low−level driver for Always IN2000...31
13.3.13. BusLogic: SCSI low−level driver for BusLogic..32
13.3.14. dtc: SCSI low−level driver for DTC3180/3280..32
13.3.15. eata: SCSI low−level driver for EATA ISA/EISA...32
13.3.16. eata_dma: SCSI low−level driver for EATA−DMA..32
13.3.17. eata_pio: SCSI low−level driver for EATA−PIO...33
13.3.18. fdomain: SCSI low−level driver for Future Domain 16xx...33
13.3.19. NCR5380: SCSI low−level driver for NCR5380/53c400..33
13.3.20. NCR53c406a: SCSI low−level driver for NCR53c406a..34
13.3.21. 53c7,8xx.o: SCSI low−level driver for NCR53c7,8xx...34
13.3.22. ncr53c8xx: SCSI low−level driver for PCI−SCS NCR538xx family........................34
13.3.23. ppa: low−level SCSI driver for IOMEGA parallel port ZIP drive.............................35
13.3.24. pas16: SCSI low−level driver for PAS16...35
13.3.25. qlogicfas: SCSI low−level driver for Qlogic FAS..35
13.3.26. qlogicisp: SCSI low−level driver for Qlogic ISP...36
13.3.27. seagate: SCSI low−level driver for Seagate, Future Domain.....................................36
13.3.28. t128: SCSI low−level driver for Trantor T128/T128F/T228......................................36
13.3.29. u14−34f: SCSI low−level driver for UltraStor 14F/34F...36
13.3.30. ultrastor: low−level SCSI driver for UltraStor...37

13.4. Network Device Drivers...37
13.4.1. bsd_comp: optional BSD compressor for PPP...37
13.4.2. slhc: SLHC compressor for PPP...37
13.4.3. 8390: General NS8390 Ethernet driver core...37
13.4.4. dummy: Dummy network interface driver...38
13.4.5. eql: serial line load balancer...38
13.4.6. dlci: frame relay DLCI driver...38
13.4.7. sdla: Sangoma S502A FRAD driver...39
13.4.8. plip: PLIP network interface driver..39
13.4.9. ppp: PPP network protocol driver...40
13.4.10. slip: SLIP network protocol driver...40
13.4.11. baycom: BAYCOM AX.25 amateur radio driver...40
13.4.12. strip: STRIP (Metricom starmode radio IP) driver...41
13.4.13. wavelan: WaveLAN driver...42
13.4.14. wic: WIC Radio IP bridge driver..42
13.4.15. scc: Z8530 SCC kiss emulation driver...42
13.4.16. 3c501: 3COM 3c501 Ethernet driver..43

Linux Loadable Kernel Module HOWTO

ii

Table of Contents
13.4.17. 3c503: 3COM 3c503 driver..43
13.4.18. 3c505: 3COM 3c505 driver..44
13.4.19. 3c507: 3COM 3c507 driver..44
13.4.20. 3c509: 3COM 3c509/3c579 driver...45
13.4.21. 3c59x: 3COM 3c590 series "Vortex" driver...45
13.4.22. wd: Western Digital/SMC WD80*3 driver..46
13.4.23. smc−ultra: SMC Ultra/EtherEZ driver...47
13.4.24. smc9194: SMC 9194 driver..48
13.4.25. at1700: AT1700 driver..48
13.4.26. e2100: Cabletron E21xx driver...49
13.4.27. depca: DEPCA, DE10x, DE200, DE201, DE202, DE422 driver...............................49
13.4.28. ewrk3: EtherWORKS 3 (DE203, DE204, DE205) driver..50
13.4.29. eexpress: EtherExpress 16 driver..50
13.4.30. eepro: EtherExpressPro driver..51
13.4.31. fmv18k: Fujitsu FMV−181/182/183/184 driver...51
13.4.32. hp−plus: HP PCLAN+ (27247B and 27252A) driver..51
13.4.33. hp: HP PCLAN (27245, 27xxx) driver...52
13.4.34. hp100: HP 10/100VG PCLAN (ISA, EISA, PCI) driver...52
13.4.35. eth16i: ICL EtherTeam 16i/32 driver...53
13.4.36. ne: NE2000/NE1000 driver..53
13.4.37. ni52: NI5210 driver..54
13.4.38. ac3200: Ansel Communications EISA 3200 driver..54
13.4.39. apricot: Apricot Xen−II on board ethernet driver...54
13.4.40. de4x5: DE425, DE434, DE435, DE450, DE500 driver...54
13.4.41. tulip: DECchip Tulip (dc21x4x) PCI driver...55
13.4.42. dgrs: Digi Intl RightSwitch SE−X driver...55
13.4.43. de600: D−Link DE600 pocket adapter driver...56
13.4.44. de620: D−Link DE620 pocket adapter driver...56
13.4.45. ibmtr: Tropic chipset based token ring adapter driver..57
13.4.46. arcnet: ARCnet driver...58
13.4.47. isdn: basic ISDN functions...58
13.4.48. icn: ICN 2B and 4B driver..59
13.4.49. pcbit: PCBIT−D driver...59
13.4.50. teles: Teles/NICCY1016PC/Creatix driver..60

13.5. CDROM Device Drivers...61
13.5.1. axtcd: Aztech/Orchid/Okano/Wearnes/TXC/CDROM driver......................................61
13.5.2. gscd: Goldstar R420 CDROM driver...61
13.5.3. sbpcd: Sound Blaster CDROM driver..61
13.5.4. mcd: Mitsumi CDROM driver..62
13.5.5. mcdx: Mitsumi XA/MultiSession driver..62
13.5.6. optcd: Optics Storage DOLPHIN 8000AT CDROM driver...62
13.5.7. cm206: Philips/LMS CM206 CDROM driver..63
13.5.8. sjcd: Sanyo CDR−H94A CDROM driver..63
13.5.9. isp16: ISP16/MAD16/Mozart soft configurable cdrom driver.....................................63
13.5.10. cdu31a: Sony CDU31A/CDU33A CDROM driver..64
13.5.11. sonycd535: Sony CDU535 CDROM driver...64

13.6. Filesystem Drivers..65
13.6.1. minix: Minix filesystem driver...65

Linux Loadable Kernel Module HOWTO

iii

Table of Contents
13.6.2. ext: "Extended" filesystem driver...65
13.6.3. ext2: "Second extended" filessystem driver..65
13.6.4. xiafs: xiafs filesystem driver..65
13.6.5. fat: DOS FAT filesystem functions...65
13.6.6. msdos: MSDOS filesystem driver...66
13.6.7. vfat: VFAT (Windows−95) filesystem driver..66
13.6.8. umsdos: UMSDOS filesystem driver..66
13.6.9. nfs: NFS filesystem driver...66
13.6.10. smbfs: SMB filesystem driver...67
13.6.11. ncpfs: NCP (Netware) filesystem driver..67
13.6.12. isofs: ISO 9660 (CDROM) filesystem driver...67
13.6.13. hpfs: OS/2 HPFS filesystem driver...68
13.6.14. sysv: System V and Coherent filesystem driver..68
13.6.15. affs: Amiga FFS filesystem driver..68
13.6.16. ufs: UFS filesystem driver..68

13.7. Miscellaneous Device Driver..69
13.7.1. misc: device driver for "miscellaneous" character devices...69

13.8. Serial Device Drivers..69
13.8.1. serial: serial communication port (UART) device driver...69
13.8.2. cyclades: Cyclades async mux device driver..69
13.8.3. stallion: Stallion EasyIO or EC8/32 device driver..70
13.8.4. istallion: Stallion EC8/64, ONboard, Brumby device driver..70
13.8.5. riscom8: SDL RISCom/8 card device driver..70

13.9. Parallel Device Drivers...70
13.9.1. lp: Parallel printer device driver...70

13.10. Bus Mouse Device Drivers...71
13.10.1. atixlmouse: ATIXL busmouse driver...71
13.10.2. busmouse: Logitech busmouse driver...71
13.10.3. msbusmouse: Microsoft busmouse driver..71
13.10.4. psaux: PS/2 mouse (aka "auxiliary device") driver..71

13.11. Tape Device Drivers...72
13.11.1. ftape: floppy tape (QIC−80/Travan) device driver...72

13.12. Watchdog Timers..73
13.12.1. WDT: WDT Watchdog timer device driver...73
13.12.2. softdog: Software Watchdog Timer..73
13.12.3. pcwd: Berkshire Products PC Watchdog Driver..73

13.13. Sound Device Drivers...74
Notes...75

14. Maintenance Of This Document..76

15. History..77

16. Copyright...77

Linux Loadable Kernel Module HOWTO

iv

1. Preface
Copyright and license information, as well as credits, are at the end of this document.

This HOWTO is maintained by Bryan Henderson, bryanh@giraffe−data.com. It was released May 31, 2001.
You can get the current version of this HOWTO from the Linux Documentation Project.

1. Preface 1

http://linuxdoc.org

2. Introduction to Linux Loadable Kernel Modules
If you want to add code to a Linux kernel, the most basic way to do that is to add some source files to the
kernel source tree and recompile the kernel. In fact, the kernel configuration process consists mainly of
choosing which files to include in the kernel to be compiled.

But you can also add code to the Linux kernel while it is running. A chunk of code that you add in this way is
called a loadable kernel module. These modules can do lots of things, but they typically are one of three
things: 1) device drivers; 2) filesystem drivers; 3) system calls. The kernel isolates certain functions,
including these, especially well so they don't have to be intricately wired into the rest of the kernel.

2.1. Terminology

Loadable kernel modules are often called just kernel modules or just modules, but those are rather misleading
terms because there are lots of kinds of modules in the world and various pieces built into the base kernel can
easily be called modules. We use the term loadable kernel module or LKM for the particular kinds of
modules this HOWTO is about.

Some people think of LKMs as outside of the kernel. They speak of LKMs communicating with the kernel.
This is a mistake; LKMs (when loaded) are very much part of the kernel. The correct term for the part of the
kernel that is bound into the image that you boot, i.e. all of the kernel except the LKMs, is "base kernel."
LKMs communicate with the base kernel.

In some other operating systems, the equivalent of a Linux LKM is called a "kernel extension."

Now what is "Linux"? Well, first of all, the name is used for two entirely different things, and only one of
them is really relevant here:

The kernel and related items distributed as a package by Linus Torvalds. 1.
A class of operating systems that traditionally are based on the Linux kernel. 2.

Only the first of these is likely to cause some confusion when talking about LKMs. Is an LKM part of Linux
or not? Though an LKM is always part of the kernel, it is part of Linux if it is distributed in the Linux kernel
package, and not otherwise. Thus, if you have a device driver LKM that came with your device loaded into
your kernel, you can't, strictly speaking, say that your kernel is Linux. Rather, it's a slight extension of Linux.

2.2. History of Loadable Kernel Modules

LKMs did not exist in Linux in the beginning. Anything we use an LKM for today was built into the base
kernel at kernel build time instead. LKMs have been around at least since Linux 1.2 (1995).

Device drivers and such were always quite modular, though. When LKMs were invented, only a small
amount of work was needed on these modules to make them buildable as LKMs. However, it had to be done
on each and every one, so it took some time. Since about 2000, virtually everything that makes sense as an
LKM has at least had the option of being an LKM.

2. Introduction to Linux Loadable Kernel Modules 2

2.3. The Case For Loadable Kernel Modules

You often have a choice between putting a module into the kernel by loading it as an LKM or binding it into
the base kernel. LKMs have a lot of advantages over binding into the base kernel and I recommend them
wherever possible.

One advantage is that you don't have to rebuild your kernel as often. This saves you time and spares you the
possibility of introducing an error in rebuilding and reinstalling the base kernel. Once you have a working
base kernel, it is good to leave it untouched as long as possible.

Another advantage is that LKMs help you diagnose system problems. A bug in a device driver which is
bound into the kernel can stop your system from booting at all. And it can be really hard to tell which part of
the base kernel caused the trouble. If the same device driver is an LKM, though, the base kernel is up and
running before the device driver even gets loaded. If your system dies after the base kernel is up and running,
it's an easy matter to track the problem down to the trouble−making device driver and just not load that
device driver until you fix the problem.

LKMs can save you memory, because you have to have them loaded only when you're actually using them.
All parts of the base kernel stay loaded all the time. And in real storage, not just virtual storage.

LKMs are much faster to maintain and debug. What would require a full reboot to do with a filesystem driver
built into the kernel, you can do with a few quick commands with LKMs. You can try out different
parameters or even change the code repeatedly in rapid succession, without waiting for a boot.

LKMs are not slower, by the way, than base kernel modules. Calling either one is simply a branch to the
memory location where it resides.

Sometimes you have to build something into the base kernel instead of making it an LKM. Anything that is
necessary to get the system up far enough to load LKMs must obviously be built into the base kernel. For
example, the driver for the disk drive that contains the root filesystem must be built into the base kernel.

2.4. What LKMs Can't Do

There is a tendency to think of LKMs like user space programs. They do share a lot of their properties, but
LKMs are definitely not user space programs. They are part of the kernel. As such, they have free run of the
system and can easily crash it.

2.5. What LKMs Are Used For

There are six main things LKMs are used for:

Device drivers. A device driver is designed for a specific piece of hardware. The kernel uses it to
communicate with that piece of hardware without having to know any details of how the hardware
works. For example, there is a device driver for ATA disk drives. There is one for NE2000
compatible Ethernet cards. To use any device, the kernel must contain a device driver for it.

•

Filesystem drivers. A filesystem driver interprets the contents of a filesystem (which is typically the
contents of a disk drive) as files and directories and such. There are lots of different ways of storing

•

Linux Loadable Kernel Module HOWTO

2.3. The Case For Loadable Kernel Modules 3

files and directories and such on disk drives, on network servers, and in other ways. For each way,
you need a filesystem driver. For example, there's a filesystem driver for the ext2 filesystem type
used almost universally on Linux disk drives. There is one for the MS−DOS filesystem too, and one
for NFS.
System calls. User space programs use system calls to get services from the kernel. For example,
there are system calls to read a file, to create a new process, and to shut down the system. Most
system calls are integral to the system and very standard, so are always built into the base kernel (no
LKM option). But you can invent a system call of your own and install it as an LKM. Or you can
decide you don't like the way Linux does something and override an existing system call with an
LKM of your own.

•

Network drivers. A network driver interprets a network protocol. It feeds and consumes data streams
at various layers of the kernel's networking function. For example, if you want an IPX link in your
network, you would use the IPX driver.

•

TTY line disciplines. These are essentially augmentations of device drivers for terminal devices. •
Executable interpreters. An executable interpreter loads and runs an executable. Linux is designed to
be able to run executables in various formats, and each must have its own executable interpreter.

•

Linux Loadable Kernel Module HOWTO

2.3. The Case For Loadable Kernel Modules 4

3. Making Loadable Kernel Modules
An LKM lives in a single ELF object file (normally named like "serial.o"). You typically keep all your LKM
object files in a particular directory (near your base kernel image makes sense). When you use the
insmod program to insert an LKM into the kernel, you give the name of that object file.

For the LKMs that are part of Linux, you build them as part of the same kernel build process that generates
the base kernel image. See the README file in the Linux source tree. In short, after you make the base
kernel image with a command such as make zImage, you will make all the LKMs with the command

make modules

This results in a bunch of symbolic links in the modules directory of the Linux source tree, which point to
the LKM object files elsewhere in the tree. These LKMs are ready to load, but you probably want to install
them in some appropriate directory. The conventional place is /lib/modules/KERNEL_RELEASE,
where KERNEL_RELEASE is something like "2.2.16". The command make modules_install will copy
them all over there.

Part of configuring the Linux kernel (at build time) is choosing which parts of the kernel to bind into the base
kernel and which parts to generate as separate LKMs. In the basic question−and−answer configuration (make
config), you are asked, for each optional part of the kernel, whether you want it bound into the kernel (a "Y"
response), created as an LKM (an "M" response), or just skipped completely (an "N" response). Other
configuration methods are similar.

As explained in Section 2.3, you should have only the bare minimum bound into the base kernel. And only
skip completely the parts that you're sure you'll never want. There is very little to lose by building an LKM
that you won't use. Some compile time, some disk space, some chance of a problem in the code killing the
kernel build. That's it.

As part of the configuration dialog you also must choose whether to use symbol versioning or not. This
choice affects building both the base kernel and the LKMs and it is crucial you get it right. See Section 6.

LKMs that are not part of Linux (i.e. not distributed with the Linux kernel) have their own build procedures
which I will not cover. The goal of any such procedure, though, is always to end up with an ELF object file.

You don't necessarily have to rebuild all your LKMs and your base kernel image at the same time (e.g. you
could build just the base kernel and use LKMs you built earlier with it) but it is always a good idea. See
Section 6.

3. Making Loadable Kernel Modules 5

4. LKM Utilities
The programs you need to load and unload and otherwise work with LKMs are in the package modutils. You
can find this package in this directory.

This package contains the following programs to help you use LKMs:

insmod

Insert an LKM into the kernel.

rmmod

Remove an LKM from the kernel.

depmod

Determine interdependencies between LKMs.

kerneld

Kerneld daemon program

ksyms

Display symbols that are exported by the kernel for use by new LKMs.

lsmod

List currently loaded LKMs.

modinfo

Display contents of .modinfo section in an LKM object file.

modprobe

Insert or remove an LKM or set of LKMs intelligently. For example, if you must load A before
loading B, Modprobe will automatically load A when you tell it to load B.

Changes to the kernel often require changes to modutils, so be sure you're using a current version of
modutils whenever you upgrade your kernel. modutils is always backward compatible (it works with older
kernels), so there's no such thing as having too new a modutils.

Warning: modprobe invokes insmod and has its location hardcoded as /sbin/insmod. There may be
other instances in modutils of the PATH not being used to find programs. So either modify the source code of
modutils before you build it, or make sure you install the programs in their conventional directories.

4. LKM Utilities 6

http://www.kernel.org/pub/linux/utils/kernel/modutils

5. How To Insert And Remove LKMs
The basic programs for inserting and removing LKMs are insmod and rmmod. See their man pages for
details.

Inserting an LKM is conceptually easy: Just type, as superuser, a command like

insmod serial.o

(serial.o contains the device driver for serial ports (UARTs)).

However, I would be misleading you if I said the command just works. It is very common, and rather
maddening, for the command to fail either with a message about a module/kernel version mismatch or a pile
of unresolved symbols.

If it does work, though, the way to prove to yourself that you know what you're doing is to look at
/proc/modules as described in Section 5.3.

Now lets look at a more difficult insertion. If you try

insmod msdos.o

you will probably get a raft of error messages like:
 msdos.o: unresolved symbol fat_date_unix2dos
 msdos.o: unresolved symbol fat_add_cluster1
 msdos.o: unresolved symbol fat_put_super
 ...

This is because msdos.o contains external symbol references to the symbols mentioned and there are no such
symbols exported by the kernel. To prove this, do a

cat /proc/ksyms

to list every symbol that is exported by the kernel (i.e. available for binding to LKMs). You will see that
'fat_date_unix2dos' is nowhere in the list.

How do you get it into the list? By loading another LKM, one which defines those symbols and exports them.
In this case, it is the LKM in the file fat.o. So do

 insmod fat.o

and then see that "fat_date_unix2dos" is in /proc/ksyms. Now redo the
insmod msdos.o

and it works. Look at /proc/modules and see that both LKMs are loaded and one depends on the other:
msdos 5632 0 (unused)
fat 30400 0 [msdos]

How did I know fat.o was the module I was missing? Just a little ingenuity. A more robust way to address
this problem is to use depmod and modprobe instead of insmod, as discussed below.

When your symbols look like "fat_date_unix2dos_R83fb36a1", the problem may be more complex than just
getting prerequisite LKMs loaded. See Section 6.

When the error message is "kernel/module version mismatch," see Section 6.

5. How To Insert And Remove LKMs 7

Often, you need to pass parameters to the LKM when you insert it. For example, a device driver wants to
know the address and IRQ of the device it is supposed to drive. Or the network driver wants to know how
much diagnostic tracing you want it to do. Here is an example of that:

insmod ne.o io=0x300 irq=11

Here, I am loading the device driver for my NE2000−like Ethernet adapter and telling it to drive the Ethernet
adapter at IO address 0x300, which generates interrupts on IRQ 11.

There are no standard parameters for LKMs and very few conventions. Each LKM author decides what
parameters insmod will take for his LKM. Hence, you will find them documented in the documentation of
the LKM. This HOWTO also compiles a lot of LKM parameter information in Section 13. For general
information about LKM parameters, see Section 8.

To remove an LKM from the kernel, the command is like

rmmod ne

There is a command lsmod to list the currently loaded LKMs, but all it does is dump the contents of
/proc/modules, with column headings, so you may just want to go to the horse's mouth and forget about
lsmod.

5.1. Intelligent Loading Of LKMs − Modprobe

Once you have module loading and unloading figured out using insmod and rmmod, you can let the system
do more of the work for you by using the higher level program modprobe. See the modprobe man page for
details.

The main thing that modprobe does is automatically load the prerequisites of an LKM you request. It does
this with the help of a file that you create with depmod and keep on your system.

Example:

modprobe msdos

This performs insmod msdos.o, but before that does insmod fat.o, since you have to have fat.o loaded
before you can load msdos.o.

Note that with modprobe, you don't name the object module; you name the module (and modprobe infers
the name of the object module, e.g. "msdos.o" from "msdos").

depmod scans your LKM object files (typically all the .o files in the appropriate
/lib/modules subdirectory) and figures out which LKMs prerequire (refer to symbols in) other LKMs. It
generates a dependency file (typically named modules.dep), which you normally keep in
/lib/modules for use by modprobe.

You can use modprobe to remove stacks of LKMs as well.

Linux Loadable Kernel Module HOWTO

5.1. Intelligent Loading Of LKMs − Modprobe 8

Via the LKM configuration file (typically /etc/modules.conf), you can fine tune the dependencies and
do other fancy things to control LKM selections. And you can specify programs to run when you insert and
remove LKMs, for example to initialize a device driver.

If you are maintaining one system and memory is not in short supply, it is probably easier to avoid
modprobe and the various files and directories it needs, and just do raw insmods in a startup script.

5.2. Kerneld

You can cause an LKM to be loaded automatically when the kernel first needs it. You do this with the
Kerneld (kerneld) daemon, which makes use of a special kernel function designed for this purpose.

As an example, let's say you run a program that executes an open system call for a file in an MS−DOS
filesystem. But you don't have a filesystem driver for the MS−DOS filesystem either bound into your base
kernel or loaded as an LKM. So the kernel does not know how to access the file you're opening on the disk.

The kernel recognizes that it has no filesystem driver for MS−DOS, but that the Kerneld daemon is running,
so it notifies Kerneld that it needs a filesystem driver for MS−DOS. Kerneld knows where you keep your
LKM of the MS−DOS filesystem driver, so it loads it and tells the kernel it did. The kernel then proceeds
with the open.

Kerneld is explained at length in the Kerneld mini−HOWTO, available from the Linux Documentation
Project.

Kerneld also removes modules that haven't been used in a while (typically 1 minute). So by using Kerneld,
you can keep only parts of the kernel that are presently needed loaded, and save memory.

This is less important than it once was, with memory being much cheaper. If you don't need to save memory,
you shouldn't bother with the complexity of Kerneld. Just load everything you might need via an initialization
script and keep it loaded.

Kerneld uses modprobe, ergo insmod, to insert LKMs.

5.3. /proc/modules

To see the presently loaded LKMs, do

cat /proc/modules

You see a line like

serial 24484 0

The left column is the name of the LKM, which is normally the name of the object file from which you
loaded it, minus the ".o" suffix. You can, however, choose any name you like with an option on insmod.

The "24484" is the size in bytes of the LKM in memory.

Linux Loadable Kernel Module HOWTO

5.2. Kerneld 9

http://www.ldp.org
http://www.ldp.org

The "0" is the use count. It tells how many things presently depend on the LKM being loaded. Typical
"things" are open devices or mounted fileystems. It is important because you cannot remove an LKM unless
the use count is zero. The LKM itself maintains this count, but the module manager uses it to decide whether
to permit an unload.

There is an exception to the above description of the use count. You may see −1 in the use count column.
What that means is that this LKM rdoes not use use counts to determine when it is OK to unload. Instead, the
LKM has registered a subroutine that the module manager can call that will return an indication of whether or
not it is OK to unload the LKM. In this case, the LKM ought to provide you with some custom interface, and
some documentation, to determine when the LKM is free to be unloaded.

Linux Loadable Kernel Module HOWTO

5.2. Kerneld 10

6. LKM − Base Kernel Compatibility
The designers of loadable kernel modules realized there would be a problem with having the kernel in
multiple files, possibly distributed independently of one another. What if the LKM mydriver.o was
written and compiled to work with the Linux 1.2.1 base kernel, and then someone tried to load it into a Linux
1.2.2 kernel? What if there was a change between 1.2.1 and 1.2.2 in the way a kernel subroutine that
mydriver.o calls works? These are internal kernel subroutines, so what's to stop them from changing from
one release to the next? You could end up with a broken kernel.

To address this problem, the creators of LKMs endowed them with a kernel version number. The special
.modinfo section of the mydriver.o object file in this example has "1.2.1" in it because it was compiled
using header files from Linux 1.2.1. Try to load it into a 1.2.2 kernel and insmod notices the mismatch and
fails, telling you you have a kernel version mismatch.

But wait. What's the chance that there really is an incompatibility between Linux 1.2.1 and 1.2.2 that will
affect mydriver.o? mydriver.o only calls a few subroutines and accesses a few data structures. Surely
they don't change with every minor release. Must we recompile every LKM against the header files for the
particular kernel into which we want to insert it?

To ease this burden, insmod has a −f option that "forces" insmod to ignore the kernel version mismatch and
insert the module anyway. Because it is so unusual for there to be a significant difference between any two
kernel versions, I recommend you always use −f. You will, however, still get a warning message about the
mismatch. There's no way to shut that off.

But LKM designers still wanted to address the problem of incompatible changes that do occasionally happen.
So they invented a very clever way to allow the LKM insertion process to be sensitive to the actual content of
each kernel subroutine the LKM uses. It's called symbol versioning (or sometimes less clearly, "module
versioning."). It's optional, and you select it when you configure the kernel via the
"CONFIG_MODVERSIONS" kernel configuration option.

When you build a base kernel or LKM with symbol versioning, the various symbols exported for use by
LKMs get defined as macros. The definition of the macro is the same symbol name plus a hexadecimal
checksum of the actual source code for the subroutine named by the symbol. So let's look at the
register_chrdev subroutine. register_chrdev is a subroutine in the base kernel that device driver
LKMs often call. With symbol versioning, there is a C macro definition like

 #define register_chrdev register_chrdev_Rc8dc8350

This macro definition is in effect both in the C source file that defines register_chrdev and in any C
source file that refers to register_chrdev, so while your eyes see register_chrdev as you read the
code, the C preprocessor knows that the function is really called register_chrdev_Rc8dc8350.

What is the meaning of that garbage suffix? It is a checksum of the actual C source code of the function in
question. I.e. if you change even one character of that source code, this suffix changes.

So let's say someone changes the parameter list of register_chrdev between Linux 1.2.1 and Linux
1.2.2. In 1.2.1, register_chrdev is a macro for register_chrdev_Rc8dc8350, but in 1.2.2, it is a
macro for register_chrdev_R12f8dc01. In mydriver.o, compiled with Linux 1.2.1 header files,
there is an external reference to register_chrdev_Rc8dc8350, but there is no such symbol exported
by the 1.2.2 base kernel. Instead, the 1.2.2 base kernel exports a symbol register_chrdev_R12f8dc01.

6. LKM − Base Kernel Compatibility 11

So if you try to insmod this 1.2.1 mydriver.o into this 1.2.2 base kernel, you will fail. And the error
message isn't one about mismatched kernel versions, but simply "unresolved symbol reference."

As clever as this is, it actually works against you much more than it works for you. Here's why: As a practical
matter, kernel developers simply can't change the interfaces between LKMs and the rest of the kernel in ways
that aren't backward compatible. As much as they may try to reserve that privilege for themselves by
declaring there to be no promise of forward compatibility, in the cold light of day, they would cause too much
pain in the world by exercising it. So they might do it sometimes when they feel they have no other choice,
but it is extremely rare. However, even a backward compatible change −− even a change to a comment −−
changes the checksum in the symbol and prevents the LKM from being inserted.

And there's no way an option like −f on insmod can get around this.

So it is generally not wise to use symbol versioning.

Of course, if you have a base kernel that was compiled with symbol versioning, then you must have all your
LKMs compiled likewise, and vice versa. Otherwise, you're guaranteed to get those "unresolved symbol
reference" errors.

Linux Loadable Kernel Module HOWTO

6. LKM − Base Kernel Compatibility 12

7. How To Boot Without A Disk Device Driver
For most systems, the ATA disk device driver must be bound into the base kernel because the root filesystem
is on an ATA disk [1] and the kernel cannot mount the root filesystem, much less read any LKMs from it,
without the ATA disk driver. But if you really want the device driver for your root filesystem to be an LKM,
here's how to do it with Initrd:

"Initrd" is the name of the "initial ramdisk" feature of Linux. With this, you have your loader (probably
LILO) load a filesystem into memory (as a ramdisk) before starting the kernel. When it starts the kernel, it
tells it to mount the ramdisk as the root filesystem. You put the disk device driver for your real root
filesystem and all the software you need to load it in that ramdisk filesystem. Your startup programs (which
live in the ramdisk) eventually mount the real (disk) filesystem as the root filesystem. Note that a ramdisk
doesn't require any device driver.

This does not free you, however, from having to bind into the base kernel 1) the filesystem driver for the
filesystem in your ramdisk, and 2) the executable interpreter for the programs in the ramdisk.

7. How To Boot Without A Disk Device Driver 13

8. About Module Parameters
It is useful to compare parameters that get passed to LKMs and parameters that get passed to modules that are
bound into the base kernel, especially since modules often can be run either way.

We've seen above that you pass parameters to an LKM by specifying something like io=0x300 on the
insmod command. For a module that is bound into the base kernel, you pass parameters to it via the kernel
boot parameters. One common way to specify kernel boot parameters is at a lilo boot prompt. Another is with
an append statement in the lilo configuration file.

The kernel initializes an LKM at the time you load it. It initializes a bound−in module at boot time.

Since there is only one string of kernel boot parameters, you need some way to identify which parameters go
to which modules. The rule for this is that if there is a module named xyz, then a kernel boot parameter
named xyz is for that module. The value of a kernel boot parameter is an arbitrary string that makes sense
only to the module.

This is why you sometimes see an LKM whose only parameter is its own name. E.g. you load the Mitsumi
CDROM driver with a command like

 insmod mcd mcd=0x340

It seems ridiculous to have the parameter named mcd instead of, say, io, but this is done for consistency
with the case where you bind mcd into the base kernel, in which case you would select the I/O port address
with the characters mcd=0x340 in the kernel boot parameters.

8. About Module Parameters 14

9. Persistent Data
Some LKMs are set up to retain information from one load to the next. This is called persistent data. When
you remove one of these LKMs with rmmod, rmmod extracts certain values from the LKM's working
storage and stores them in a file. When you next insert the LKM with insmod, insmod reads the persistent
data from the file and inserts it into the LKM.

See the −−persist option on insmod and rmmod.

Persistent data was introduced in November 2000.

9. Persistent Data 15

10. Technical Details

10.1. How They Work

insmod makes an init_module system call to load the LKM into kernel memory. Loading it is the easy
part, though. How does the kernel know to use it? The answer is that the init_module system call invokes
the LKM's initialization routine right after it loads the LKM. insmod passes to init_module the address
of the subroutine in the LKM named init_module as its initialization routine.

(This is confusing −− every LKM has a subroutine named init_module, and the base kernel has a system
call by that same name, which is accessible via a subroutine in the standard C library also named
init_module).

The LKM author set up init_module to call a kernel function that registers the subroutines that the LKM
contains. For example, a character device driver's init_module subroutine might call the kernel's
register_chrdev subroutine, passing the major and minor number of the device it intends to drive and
the address of its own "open" routine among the arguments. register_chrdev records in base kernel
tables that when the kernel wants to open that particular device, it should call the open routine in our LKM.

But the astute reader will now ask how the LKM's init_module subroutine knew the address of the base
kernel's register_chrdev subroutine. This is not a system call, but an ordinary subroutine bound into
the base kernel. Calling it means branching to its address. The answer to this is insmod relocation.
insmod functions as a relocating linker/loader. The LKM object file contains an external reference to the
symbol register_chrdev. insmod does a query_module system call to find out the addresses of
various symbols that the existing kernel exports. register_chrdev is among these.
query_module returns the address for which register_chrdev stands and insmod patches that into
the LKM where it refers to register_chrdev.

If you want to see the kind of information insmod can get from a query_module system call, look at the
contents of /proc/ksyms.

Note that some LKMs call subroutines in other LKMs. They can do this because of the __ksymtab and
.kstrtab sections in the LKM object files. These sections together list the external symbols within the
LKM object file that are supposed to be accessible by other LKMs inserted in the future. insmod looks at
__ksymtab and .kstrtab and tells the kernel to add those symbols to its exported kernel symbols table.

To see this for yourself, insert the LKM msdos.o and then notice in /proc/ksyms the symbol
fat_add_cluster (which is the name of a subroutine in the fat.o LKM).

10.2. The .modinfo Section

An ELF object file consists of various named sections. Some of them are basic parts of an object file, for
example the .text section contains executable code that a loader loads. But you can make up any section
you want and have it used by special programs. For the purposes of Linux LKMs, there is the
.modinfo section. An LKM doesn't have to have a section named .modinfo to work, but the macros
you're supposed to use to code an LKM cause one to be generated, so they generally do.

10. Technical Details 16

To see the sections of an object file, including the .modinfo section if it exists, use the objdump program.
For example:

To see all the sections in the object file for the msdos LKM:

objdump msdos.o −−section−headers

To see the contents of the .modinfo section:
objdump msdos.o −−full−contents −−section=.modinfo

You can use the modinfo program to interpret the contents of the .modinfo section.

So what is in the .modinfo section and who uses it? insmod uses the .modinfo section for the following:

It contains the kernel release number for which the module was built. I.e. of the kernel source tree
whose header files were used in compiling the module.

•

insmod uses that information as explained in Section 6.

It describes the form of the LKM's parameters. insmod uses this information to format the
parameters you supply on the insmod command line into data structure initial values, which
insmod inserts into the LKM as it loads it.

•

10.3. The __ksymtab And .kstrtab Sections

Two other sections you often find in an LKM object file are named __ksymtab and .kstrtab. Together,
they list symbols in the LKM that should be accessible (exported) to other parts of the kernel. A symbol is
just a text name for an address in the LKM. LKM A's object file can refer to an address in LKM B by name
(say, getBinfo"). When you insert LKM A, after having inserted LKM B, insmod can insert into LKM A
the actual address within LKM B where the data/subroutine named getBinfo is loaded.

See Section 10.1 for more mind−numbing details of symbol binding.

Linux Loadable Kernel Module HOWTO

10.3. The __ksymtab And .kstrtab Sections 17

11. Writing Your Own Loadable Kernel Module
The Linux Kernel Module Programming Guide is a complete explanation of writing your own LKM.

It is, however, a little out of date. Here are a few things about writing an LKM that aren't in there.

11.1. Improving On Use Counts

In the original design, the LKM increments and decrements its use count to tell the module manager whether
it is OK to unload it. For example, if it's a filesystem driver, it would increment the use count when someone
mounts a filesystem of the type it drives, and decrement it at unmount time.

Now, there is a more flexible alternative. Your LKM can register a function that the module manager will call
whenever it wants to know if it is OK to unload the module. If the function returns a true value, that means
the LKM is busy and cannot be unloaded. If it returns a false value, the LKM is idle and can be unloaded.
The module manager holds the big kernel lock from before calling the module−busy function until after its
cleanup subroutine returns or sleeps, and unless you've done something odd, that should mean that your LKM
cannot become busy between the time that you report "not busy" and the time you clean up.

So how do you register the module−busy function? By putting its address in the unfortunately named
can_unload field in the module descriptor ("struct module"). The name is truly unfortunate because the
boolean value it returns is the exact opposite of what "can unload" means: true if the module manager
cannot unload the LKM.

The module manager ensures that it does not attempt to unload the module before its initialization subroutine
has returned or sleeps, so you are safe in setting the can_unload field anywhere in the initialization
subroutine except after a sleep.

11. Writing Your Own Loadable Kernel Module 18

http://linuxdoc.org/LDP/lkmpg

12. Related Documentation
For modules that are part of Linux (i.e. distributed with the base kernel), you can sometimes find
documentation in the Documentation subdirectory of the Linux source code.

Many LKMs can be alternatively bound into the base kernel. If you do that, you will pass parameters to them
via the kernel "command line," which in its most basic form means via a prompt at boot time. The
BootPrompt HOWTO by Paul Gortmaker <Paul.Gortmaker@anu.edu.au> will help you with that. It
is available from the Linux Documentation Project.

Don't forget that the source code of Linux and any LKM is always the documentation of last resort, and the
most trustworthy.

12. Related Documentation 19

mailto:Paul.Gortmaker@anu.edu.au
http://www.ldp.org

13. Individual Modules
In this chapter, I document individual LKMs. Where possible, I do this by reference to more authoritative
documentation for the particular LKM (probably maintained by the same person who maintains the LKM
code).

13.1. Executable Interpreters

You must have at least one executable interpreter bound into the base kernel, because in order to load an
executable interpreter LKM, you have to run an executable and something has to interpret that executable.

That one bound−in executable interpreter is almost certainly the ELF interpreter, since virtually all
executables in a Linux system are ELF.

Historical note: Before ELF existed on Linux (c. 1995), the normal executable format was a.out. For a while,
part ELF/part a.out systems were common. Some still exist.

13.1.1. binfmt_aout: executable interpreter for a.out format

a.out is the venerable executable format that was common in Unix's early history and originally Linux's only
executable format. To this day, the default name of the executable output file of the GNU compiler is
a.out (regardless of what it's format is).

If you try to run an a.out executable without this, your exec system call fails with a "cannot execute binary
file" error.

There are no LKM parameters.

Example:

modprobe binfmt_aout

13.1.2. binfmt_elf: executable interpreter for ELF format

ELF is the normal executable format on Linux systems.

It's almost inconceivable that you wouldn't have this executable interpreter bound into the base kernel (if for
no other reason that your insmod is probably an ELF executable). However, it is conceptually possible to
leave it out of the base kernel and insert it as an LKM.

There are no LKM parameters.

Example:

modprobe binfmt_elf

13. Individual Modules 20

13.1.3. binfmt_java: executable interpreter for Java bytecode

Java is a relatively modern object oriented programming language. Java programs are traditionally compiled
into "Java bytecode" which is meant to be interpreted by a Java bytecode interpreter. The point of this new
object language is that the bytecode object files are portable: Although different systems require different
object formats, as long as each system has a bytecode interpreter, it can run bytecode object files. (This only
works for a while, of course. If portability were that easy, all systems today would use the same object format
anyway).

While the intent was that the bytecode interpreter would run as a user space program, with this LKM you can
make the Linux kernel interpret Java bytecode like any other executable format. So you can run a program
compiled from Java the same as you would run a program compiled from C (e.g. type its name at a command
shell prompt).

In practice, the advantages of the intermediate bytecode language have not been proven and it is quite
common to compile Java directly to a more traditional executable format, such as ELF. If you do that, you
don't need binfmt_java.

There are no LKM parameters.

Example:

modprobe binfmt_java

13.2. Block Device Drivers

13.2.1. floppy: floppy disk driver

This is the device driver for floppy disks. You need this in order to access a floppy disk in any way.

This LKM is documented in the file README.fd in the linux/drivers/block directory of the
Linux source tree. For detailed up to date information refer directly to this file.

Note that if you boot (or might boot) from a floppy disk or with a root filesystem on a floppy disk, you must
have this driver bound into the base kernel, because your system will need it before it has a chance to insert
the LKM.

Example:

 modprobe floppy 'floppy="daring two_fdc 0,thinkpad 0x8,fifo_depth"'

There is only one LKM parameter: floppy. But it contains many subparameters. The reason for this
unusual parameter format is to be consistent with the way you would specify the same things in the kernel
boot parameters if the driver were bound into the base kernel.

Linux Loadable Kernel Module HOWTO

13.1.3. binfmt_java: executable interpreter for Java bytecode 21

The value of floppy is a sequence of blank−delimited words. Each of those words is one of the following
sequences of comma−delimited words:

asus_pci

Sets the bit mask of allowed drives to allow only units 0 and 1. Obsolete, as this is the default setting
anyways

daring

Tells the floppy driver that you have a well behaved floppy controller. This allows more efficient and
smoother operation, but may fail on certain controllers. This may speed up certain operations.

0,daring

Tells the floppy driver that your floppy controller should be used with caution.

one_fdc

Tells the floppy driver that you have only floppy controller (default).

address,two_fdc

Tells the floppy driver that you have two floppy controllers. The second floppy controller is assumed
to be at address. This option is not needed if the second controller is at address 0x370, and if you
use the 'cmos' option

two_fdc

Like above, but with default address

thinkpad

Tells the floppy driver that you have an IBM Thinkpad model notebook computer. Thinkpads use an
inverted convention for the disk change line.

0,thinkpad

Tells the floppy driver that you don't have a Thinkpad.

nodma

Tells the floppy driver not to use DMA for data transfers. This is needed on HP Omnibooks, which
don't have a workable DMA channel for the floppy driver. This option is also useful if you frequently
get "Unable to allocate DMA memory" messages. Indeed, DMA memory needs to be continuous in
physical memory, and is thus harder to find, whereas non−DMA buffers may be allocated in virtual
memory. However, I advise against this if you have an FDC without a FIFO (8272A or 82072).
82072A and later are OK). You also need at least a 486 to use nodma. If you use nodma mode, I
suggest you also set the FIFO threshold to 10 or lower, in order to limit the number of data transfer
interrupts.

Linux Loadable Kernel Module HOWTO

13.1.3. binfmt_java: executable interpreter for Java bytecode 22

If you have a FIFO−able FDC, the floppy driver automatically falls back on non DMA mode if it
can't find any DMA−able memory. If you want to avoid this, explicitly specify "yesdma".

omnibook

Same as nodma.

yesdma

Tells the floppy driver that a workable DMA channel is available (the default).

nofifo

Disables the FIFO entirely. This is needed if you get "Bus master arbitration error" messages from
your Ethernet card (or from other devices) while accessing the floppy.

fifo

Enables the FIFO (default)

threshold,fifo_depth

Sets the FIFO threshold. This is mostly relevant in DMA mode. If this is higher, the floppy driver
tolerates more interrupt latency, but it triggers more interrupts (i.e. it imposes more load on the rest of
the system). If this is lower, the interrupt latency should be lower too (faster processor). The benefit
of a lower threshold is fewer interrupts.

To tune the fifo threshold, switch on over/underrun messages using 'floppycontrol −−messages'. Then
access a floppy disk. If you get a huge amount of "Over/Underrun − retrying" messages, then the fifo
threshold is too low. Try with a higher value, until you only get an occasional Over/Underrun.

The value must be between 0 and 0xf, inclusive.

As you insert and remove the LKM to try different values, remember to redo the 'floppycontrol
−−messages' every time you insert the LKM. You shouldn't normally have to tune the fifo, because
the default (0xa) is reasonable.

drive,type,cmos

Sets the CMOS type of drive to type. This is mandatory if you have more than two floppy drives
(only two can be described in the physical CMOS), or if your BIOS uses non−standard CMOS types.
The CMOS types are:

0

Use the value of the physical CMOS

1

5 1/4 DD

Linux Loadable Kernel Module HOWTO

13.1.3. binfmt_java: executable interpreter for Java bytecode 23

2

5 1/4 HD

3

3 1/2 DD

4

3 1/2 HD

5

3 1/2 ED

6

3 1/2 ED

16

unknown or not installed

(Note: there are two valid types for ED drives. This is because 5 was initially chosen to represent
floppy tapes, and 6 for ED drives. AMI ignored this, and used 5 for ED drives. That's why the floppy
driver handles both)

unexpected_interrupts

Print a warning message when an unexpected interrupt is received. (default behavior)

no_unexpected_interrupts

Don't print a message when an unexpected interrupt is received. This is needed on IBM L40SX
laptops in certain video modes. (There seems to be an interaction between video and floppy. The
unexpected interrupts only affect performance, and can safely be ignored.)

L40SX

Same as no_unexpected_interrupts.

broken_dcl

Don't use the disk change line, but assume that the disk was changed whenever the device node is
reopened. Needed on some boxes where the disk change line is broken or unsupported. This should
be regarded as a stopgap measure, indeed it makes floppy operation less efficient due to unneeded
cache flushings, and slightly more unreliable. Please verify your cable, connection and jumper
settings if you have any DCL problems. However, some older drives, and also some laptops are
known not to have a DCL.

Linux Loadable Kernel Module HOWTO

13.1.3. binfmt_java: executable interpreter for Java bytecode 24

debug

Print debugging messages

messages

Print informational messages for some operations (disk change notifications, warnings about over
and underruns, and about autodetection)

silent_dcl_clear

Uses a less noisy way to clear the disk change line (which doesn't involve seeks). Implied by daring.

nr,irq

Tells the driver to expect interrupts on IRQ nr instead of the conventional IRQ 6.

nr,dma

Tells the driver to use DMA channel nr instead of the conventional DMA channel 2.

slow

Use PS/2 stepping rate: PS/2 floppies have much slower step rates than regular floppies. It's been
recommended that take about 1/4 of the default speed in some more extreme cases.

mask,allowed_drive_mask

Sets the bitmask of allowed drives to mask. By default, only units 0 and 1 of each floppy controller
are allowed. This is done because certain non−standard hardware (ASUS PCI motherboards) mess up
the keyboard when accessing units 2 or 3. This option is somewhat obsoleted by the 'cmos' option.

all_drives

Sets the bitmask of allowed drives to all drives. Use this if you have more than two drives connected
to a floppy controller.

13.2.2. loop: loop device driver

This module lets you mount a filesystem that is stored in a regular file (in another filesystem). One use of this
is to test an ISO 9660 filesystem before irreversibly burning it onto a CD. You build the filesystem in a 650
MB regular file. That file will be the input to the CD burning program. But you can define that file as a
loopback device and then mount the filesystem right from the file. It can also give you a handy way to
transmit collections of files over a network. It's like a tar file, only you don't have to pack and unpack it −−
you just mount the original file.

You can also encrypt or compress the file. To do that, you need a recent version of mount and other patches
for DES and IDEA. They can

Linux Loadable Kernel Module HOWTO

13.2.2. loop: loop device driver 25

Do not confuse these loop devices with the "loopback device" used for network connections from the
machine to itself. That isn't actually a device at all − it's a network interface.

Example:

modprobe loop

The module has no parameters.

13.2.3. linear: linear (non−RAID) disk array device driver

This driver lets you combine several disk partitions into one logical block device.

If you use this, then your multiple devices driver will be able to use the so−called linear mode, i.e. it will
combine the disk partitions by simply appending one to the other.

See Software−RAID−HOWTO.

Example:

modprobe linear

There are no module parameters.

13.2.4. raid0: RAID−0 device driver

This driver lets you combine several disk partitions into one logical block device.

If you use this, then your multiple devices driver will be able to use the so−called raid0 mode, i.e. it will
combine the disk partitions into one logical device in such a fashion as to fill them up evenly, one chunk here
and one chunk there. This will increase the throughput rate if the partitions reside on distinct disks.

See Software−RAID−HOWTO.

Example:

modprobe raid0

There are no module parameters.

13.2.5. rd: ramdisk device driver

A ramdisk is a block device whose storage is composed of system memory (real memory; not virtual). You
can use it like a very fast disk device and also in circumstances where you need a device, but don't have
traditional hardware devices to play with.

Linux Loadable Kernel Module HOWTO

13.2.3. linear: linear (non−RAID) disk array device driver 26

A common example of the latter is for a rescue system −− a system you use to diagnose and repair your real
system. Since you don't want to mess with your real disks, you run off ramdisks. You might load data into
these ramdisks from external media such as floppy disks.

Sometimes, you have your boot loader (e.g. lilo) create a ramdisk and load it with data (perhaps from a
floppy disk). Of course, if you do this, you cannot use the LKM version of the ramdisk driver because the
driver will have to be in the kernel at boot time.

A ramdisk is actually conceptually simple in Linux. Disk devices operate through memory because of the
buffer cache. The only difference with a ramdisk is that you never actually get past the buffer cache to a real
device. This is because with a ramdisk, 1) when you first access a particular block, Linux just assumes it is all
zeroes; and 2) the device's buffer cache blocks are never written to the device, ergo never stolen for use with
other devices. This means reads and writes are always to the buffer cache and never reach the device.

There is additional information about ramdisks in the file Documentation/ramdisk.txt in the Linux
source tree.

Example:

 modprobe rd

There are no module parameters that you can supply to the LKM, but if you bind the module into the base
kernel, there are kernel parameters you can pass to it. See BootPrompt−HOWTO.

13.2.6. xd: XT disk device driver

Very old 8 bit hard disk controllers used in the IBM XT computer. No, the existence of XT disk support does
NOT mean that you can run Linux on an IBM XT :).

Example:

modprobe xd

There are no module parameters.

13.3. SCSI Drivers

Detailed information about SCSI drivers is in SCSI−2.4−HOWTO.

Linux's SCSI function is implemented in three layers, and there are LKMs for all of them.

In the middle is the mid−level driver or SCSI core. This consists of the scsi_mod LKM. It does all those
things that are common among SCSI devices regardless of what SCSI adapter you use and what class of
device (disk, scanner, CD−ROM drive, etc.) it is.

There is a low−level driver for each kind of SCSI adapter −− typically, a different driver for each brand. For
example, the low−level driver for Advansys adapters (made by the company which is now Connect.com) is

Linux Loadable Kernel Module HOWTO

13.2.6. xd: XT disk device driver 27

named advansys. (If you are comparing ATA (aka IDE) and SCSI disk devices, this is a major difference −−
ATA is simple and standard enough that one driver works with all adapters from all companies. SCSI is less
standard and as a result you should have less confidence in any particular adapter being perfectly compatible
with your system).

High−level drivers present to the rest of the kernel an interface appropriate to a certain class of devices. The
SCSI high−level driver for tape devices, st, for example, has ioctls to rewind. The high−level SCSI driver for
CD−ROM drives, sr, does not.

Note that you rarely need a high−level driver specific to a certain brand of device. At this level, there is little
room for one brand to be distinguishable from another.

One SCSI high−level driver that deserves special mention is sg. This driver, called the "SCSI generic" driver,
is a fairly thin layer that presents a rather raw representation of the SCSI mid−level driver to the rest of the
kernel. User space programs that operate through the SCSI generic driver (because they access device special
files whose major number is the one registered by sg (to wit, 21)) have a detailed understanding of SCSI
protocols, whereas user space programs that operate through other SCSI high−level drivers typically don't
even know what SCSI is. SCSI−Programming−HOWTO has complete documentation of the SCSI generic
driver.

The layering order of the SCSI modules belies the way the LKMs depend upon each other and the order in
which they must be loaded. You always load the mid−level driver first and unload it last. The low−level and
high−level drivers can be loaded and unloaded in any order after that, and they hook themselves into and
establish dependency on the mid−level driver at both ends. If you don't have a complete set, you will get a
"device not found" error when you try to access a device.

Most SCSI low−level (adapter) drivers don't have LKM parameters; they do generally autoprobe for card
settings. If your card responds to some unconventional port address you must bind the driver into the base
kernel and use kernel "command line" options. See BootPrompt−HOWTO. Or you can twiddle The Source
and recompile.

Many SCSI low−level drivers have documentation in the drivers/scsi directory in the Linux source
tree, in files called README.*.

13.3.1. scsi_mod: SCSI mid−level driver

Example:

modprobe scsi_mod

There are no module parameters.

13.3.2. sd_mod: SCSI high−level driver for disk devices

Example:

modprobe sd_mod

Linux Loadable Kernel Module HOWTO

13.3.1. scsi_mod: SCSI mid−level driver 28

There are no module parameters.

13.3.3. st: SCSI high−level driver for tape devices

Example:

modprobe st

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

13.3.4. sr_mod: SCSI high−level driver for CD−ROM drives

Example:

modprobe sr_mod

There are no module parameters.

13.3.5. sg: SCSI high−level driver for generic SCSI devices

See the explanation of this special high−level driver above.

Example:

modprobe sg

There are no module parameters.

13.3.6. wd7000: SCSI low−level driver for 7000FASST

Example:

modprobe wd7000

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

This driver atoprobes the card and requires installed BIOS.

Linux Loadable Kernel Module HOWTO

13.3.3. st: SCSI high−level driver for tape devices 29

13.3.7. aha154x: SCSI low−level driver for Adaptec AHA152X/2825

Example:

modprobe aha154x

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

This driver atoprobes the card and requires installed BIOS.

13.3.8. aha1542: SCSI low−level driver for Adaptec AHA1542

Example:

modprobe aha1542

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

This driver autoprobes the card at 0x330 and 0x334 only.

13.3.9. aha1740: SCSI low−level driver for Adaptec AHA1740 EISA

Example:

modprobe aha1740

There are no module parameters.

This driver autoprobes the card.

13.3.10. aic7xxx: SCSI low−level driver for Adaptec AHA274X/284X/294X

Example:

modprobe aic7xxx

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

This driver autoprobes the card and BIOS must be enabled.

Linux Loadable Kernel Module HOWTO

13.3.7. aha154x: SCSI low−level driver for Adaptec AHA152X/2825 30

13.3.11. advansys: SCSI low−level driver for AdvanSys/Connect.com

Example:

modprobe advansys asc_iopflag=1 asc_ioport=0x110,0x330 asc_dbglvl=1

Module Parameters:

asc_iopflag

1

enable port scanning

0

disable port scanning

asc_ioport

I/O port addresses to scan for Advansys SCSI adapters

asc_dbglvl

debugging level:

0

Errors only

1

High level tracing

2−N

Verbose tracing

If you bind this driver into the base kernel, you can pass parameters to it via the kernel boot parameters. See
BootPrompt−HOWTO.

13.3.12. in2000: SCSI low−level driver for Always IN2000

Example:

modprobe in2000

There are no module parameters.

Linux Loadable Kernel Module HOWTO

13.3.11. advansys: SCSI low−level driver for AdvanSys/Connect.com 31

This driver autoprobes the card. No BIOS is required.

13.3.13. BusLogic: SCSI low−level driver for BusLogic

The list of BusLogic cards this driver can drive is long. Read file
drivers/scsi/README.BusLogic in the Linux source tree to get the total picture.

Example:

modprobe BusLogic

There are no module parameters.

If you bind this driver into the base kernel, you can pass parameters to it via the kernel boot parameters. See
BootPrompt−HOWTO.

13.3.14. dtc: SCSI low−level driver for DTC3180/3280

Example:

modprobe dtc

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

This driver autoprobes the card.

13.3.15. eata: SCSI low−level driver for EATA ISA/EISA

This driver handles DPT PM2011/021/012/022/122/322.

Example:

modprobe eata

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

13.3.16. eata_dma: SCSI low−level driver for EATA−DMA

This driver handles DPT, NEC, AT&T, SNI, AST, Olivetti, and Alphatronix.

This driver handles DPT Smartcache, Smartcache III and SmartRAID.

Example:

Linux Loadable Kernel Module HOWTO

13.3.13. BusLogic: SCSI low−level driver for BusLogic 32

modprobe eata_dma

There are no module parameters.

Autoprobe works in all configurations.

13.3.17. eata_pio: SCSI low−level driver for EATA−PIO

This driver handles old DPT PM2001, PM2012A.

Example:

 modprobe eata_pio

There are no module parameters.

13.3.18. fdomain: SCSI low−level driver for Future Domain 16xx

Example:

modprobe fdomain

There are no module parameters.

This driver autoprobes the card and requires installed BIOS.

13.3.19. NCR5380: SCSI low−level driver for NCR5380/53c400

Example:

modprobe NCR5380 ncr_irq=xx ncr_addr=xx ncr_dma=xx ncr_5380=1 \
 ncr_53c400=1

for a port mapped NCR5380 board:
modprobe g_NCR5380 ncr_irq=5 ncr_addr=0x350 ncr_5380=1

for a memory mapped NCR53C400 board with interrupts disabled:
modprobe g_NCR5380 ncr_irq=255 ncr_addr=0xc8000 ncr_53c400=1

Parameters:

ncr_irq

the irq the driver is to service. 255 means no or DMA interrupt. 254 to autoprobe for an IRQ line if
overridden on the command line.

ncr_addr

Linux Loadable Kernel Module HOWTO

13.3.17. eata_pio: SCSI low−level driver for EATA−PIO 33

the I/O port address or memory mapped I/O address, whichever is appropriate, that the driver is to
drive

ncr_dma

the DMA channel the driver is to use

ncr_5380

1 = set up for a NCR5380 board

ncr_53c400

1 = set up for a NCR53C400 board

If you bind this driver into the base kernel, you can pass parameters to it via the kernel boot parameters. See
BootPrompt−HOWTO.

13.3.20. NCR53c406a: SCSI low−level driver for NCR53c406a

Example:

modprobe NCR53c406a

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

13.3.21. 53c7,8xx.o: SCSI low−level driver for NCR53c7,8xx

Example:

modprobe 53c7,8xx

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

This driver autoprobes the card and requires installed BIOS.

13.3.22. ncr53c8xx: SCSI low−level driver for PCI−SCS NCR538xx family

Example:

modprobe ncr53c8xx

There are no module parameters.

Linux Loadable Kernel Module HOWTO

13.3.20. NCR53c406a: SCSI low−level driver for NCR53c406a 34

13.3.23. ppa: low−level SCSI driver for IOMEGA parallel port ZIP drive

See the file drivers/scsi/README.ppa in the Linux source tree for details.

Example:

modprobe ppa ppa_base=0x378 ppa_nybble=1

Parameters:

ppa_base

Base address of the PPA's I/O port. Default 0x378.

ppa_speed_high

Delay used in data transfers, in microseconds. Default is 1.

ppa_speed_low

Delay used in other operations, in microseconds. Default is 6.

ppa_nybble

1 = Use 4−bit mode. 0 = don't. Default is 0.

13.3.24. pas16: SCSI low−level driver for PAS16

Example:

modprobe pas16

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

This driver autoprobes the card. No BIOS is required.

13.3.25. qlogicfas: SCSI low−level driver for Qlogic FAS

Example:

modprobe qlogicfas

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

Linux Loadable Kernel Module HOWTO

13.3.23. ppa: low−level SCSI driver for IOMEGA parallel port ZIP drive 35

13.3.26. qlogicisp: SCSI low−level driver for Qlogic ISP

Example:

modprobe qlogicisp

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

Requires firmware.

13.3.27. seagate: SCSI low−level driver for Seagate, Future Domain

This driver is for Seagate ST−02 and Future Domain TMC−8xx.

Example:

 modprobe seagate

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

This driver autoprobes for address only. The IRQ is fixed at 5. The driver requires installed BIOS.

13.3.28. t128: SCSI low−level driver for Trantor T128/T128F/T228

Example:

 modprobe t128

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

This driver autoprobes the card. The driver requires installed BIOS.

13.3.29. u14−34f: SCSI low−level driver for UltraStor 14F/34F

Example:

 modprobe u14−34f

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

This driver autoprobes the card, but not the 0x310 port. No BIOS is required.

Linux Loadable Kernel Module HOWTO

13.3.26. qlogicisp: SCSI low−level driver for Qlogic ISP 36

13.3.30. ultrastor: low−level SCSI driver for UltraStor

Example:

modprobe ultrastor

There are no module parameters for the LKM, but if you bind this module into the base kernel, you can pass
some parameters via the Linux boot parameters. See BootPrompt−HOWTO.

13.4. Network Device Drivers

13.4.1. bsd_comp: optional BSD compressor for PPP

Example:

modprobe bsd_comp

There are no module parameters.

This module depends on module ppp.

13.4.2. slhc: SLHC compressor for PPP

This module contains routines to compress and uncompress tcp packets (for transmission over low speed
serial lines).

These routines are required by PPP (also ISDN−PP) and SLIP protocols, and are used by the LKMs that
implement those protocols.

Example:

modprobe slhc

There are no module parameters.

13.4.3. 8390: General NS8390 Ethernet driver core

This is driver code for the 8390 Ethernet chip on which many Ethernet adapters are based. This is not a
complete interface driver; the routines in this module are used by drivers for particular Ethernet adapters,
such as ne and 3c503.

Example:

Linux Loadable Kernel Module HOWTO

13.3.30. ultrastor: low−level SCSI driver for UltraStor 37

modprobe 8390

There are no module parameters.

13.4.4. dummy: Dummy network interface driver

This is said to be a bit−bucket device (i.e. traffic you send to this device is consigned into oblivion) with a
configurable IP address. It is most commonly used in order to make your currently inactive SLIP address
seem like a real address for local programs.

However, it also functions as a sort of loopback device. You configure it for a particular IP address and any
packet you send to that IP address via this interface comes back and appears as a packet received by that
interface for that IP address. This is especially handy for an IP address that would normally be reflected by
another interface (a PPP interface, perhaps), but that interface is down right now.

You can have multiple dummy interfaces. They are named dummy0, dummy1, etc.

Example:

modprobe dummy

There are no module parameters.

13.4.5. eql: serial line load balancer

If you have two serial connections to some other computer (this usually requires two modems and two
telephone lines) and you use PPP (a protocol for sending internet traffic over telephone lines) or SLIP (an
older alternative to PPP) on them, you can make them behave like one double speed connection using this
driver.

Example:

modprobe eql

There are no module parameters.

13.4.6. dlci: frame relay DLCI driver

This implements the frame relay protocol; frame relay is a fast low−cost way to connect to a remote internet
access provider or to form a private wide area network. The one physical line from your box to the local
"switch" (i.e. the entry point to the frame relay network) can carry several logical point−to−point connections
to other computers connected to the frame relay network. To use frame relay, you need supporting hardware
(FRAD) and certain programs from the net− tools package as explained in
Documentation/networking/framerelay.txt in the Linux source tree.

Example:

Linux Loadable Kernel Module HOWTO

13.4.4. dummy: Dummy network interface driver 38

modprobe dlci

There are no module parameters.

13.4.7. sdla: Sangoma S502A FRAD driver

This is a driver for the Sangoma S502A, S502E and S508 Frame Relay Access Devices. These are
multi−protocol cards, but this driver can drive only frame relay right now. Please read
Documentation/networking/framerelay.txt in the Linux source tree.

Example:

modprobe sdla

There are no module parameters.

This module depends on module dlci.

13.4.8. plip: PLIP network interface driver

PLIP (Parallel Line Internet Protocol) is used to create a mini network consisting of two (or, rarely, more)
local machines. The parallel ports (the connectors virtually all ISA−descendant computers have that are
normally used to attach printers) are connected using "null printer" or "Turbo Laplink" cables which can
transmit 4 bits at a time or using special PLIP cables, to be used on bidirectional parallel ports only, which
can transmit 8 bits at a time. The cables can be up to 15 meters long. This works also if one of the machines
runs DOS/Windows and has some PLIP software installed, e.g. the Crynwr PLIP packet driver and
winsock or NCSA's telnet.

See PLIP−Install−HOWTO.

Example:

modprobe plip io=0x378 irq=7

Parameters:

io

Port address of parallel port driver is to drive.

irq

IRQ number of IRQ driver is to service. Default is IRQ 5 for port at 0x3bc, IRQ 7 for port at 0x378,
and IRQ 9 for port at 0x278.

If you don't specify the io parameter, the driver probes addresses 0x278, 0x378, and 0x3bc.

Linux Loadable Kernel Module HOWTO

13.4.7. sdla: Sangoma S502A FRAD driver 39

13.4.9. ppp: PPP network protocol driver

PPP (Point to Point Protocol) is the most common protocol to use over a serial port (with or without a modem
attached) to create an IP network link between two computers.

Along with this kernel driver, you need the user space program pppd running.

See PPP−HOWTO.

Example:

modprobe ppp

There are no module parameters.

This module depends on module slhc.

The module also accesses serial devices, which are driven by the serial module, so it depends on that module
too. This dependency is not detected by depmod, so you either have to declare it manually or load
serial explicitly.

13.4.10. slip: SLIP network protocol driver

SLIP (Serial Line Internet Protocol) is like PPP, only older and simpler.

Example:

modprobe slip slip_maxdev=1

Parameters:

slip_maxdev

Maximum number of devices the driver may use at one time. Default is 256.

This module depends on module slhc.

The module also accesses serial devices, which are driven by the serial module, so it depends on that module
too. This dependency is not detected by depmod, so you either have to declare it manually or load
serial explicitly.

13.4.11. baycom: BAYCOM AX.25 amateur radio driver

This is a driver for Baycom style simple amateur radio modems that connect to either a serial interface or a
parallel interface. The driver works with the ser12 and par96 designs.

For more information, see http://www.baycom.org/~tom.

Linux Loadable Kernel Module HOWTO

13.4.9. ppp: PPP network protocol driver 40

http://www.baycom.org/~tom<

Example:

modprobe baycom modem=1 iobase=0x3f8 irq=4 options=1

Parameters:

major

major number the driver should use; default 60

modem

modem type of the first channel (minor 0):

1

ser12

2

par96/par97

iobase

base address of the port the driver is to drive. Common values are for ser12 0x3f8, 0x2f8, 0x3e8,
0x2e8 and for par96/par97 0x378, 0x278, 0x3bc.

irq

IRQ the driver is to service. Common values are 3 and 4 for ser12 and 7 for for par96/par97.

options

0

use hardware DCD

1

use software DCD

13.4.12. strip: STRIP (Metricom starmode radio IP) driver

STRIP is a radio protocol developed for the MosquitoNet project to send Internet traffic using Metricom
radios. Metricom radios are small, battery powered, 100kbit/sec packet radio transceivers, about the size and
weight of a wireless telephone. (You may also have heard them called "Metricom modems" but we avoid the
term "modem" because it misleads many people into thinking that you can plug a Metricom modem into a
phone line and use it as a modem.) You can use STRIP on any Linux machine with a serial port, although it is
obviously most useful for people with laptop computers.

Linux Loadable Kernel Module HOWTO

13.4.12. strip: STRIP (Metricom starmode radio IP) driver 41

http://mosquitonet.stanford.edu/

Example:

modprobe strip

There are no module parameters.

13.4.13. wavelan: WaveLAN driver

WaveLAN card are for wireless ethernet−like networking. This driver drives AT&T GIS and NCR
WaveLAN cards.

Example:

modprobe wavelan io=0x390 irq=0

Parameters:

io

Address of I/O port on the card. Default is 0x390. You can set a different address on the card, but it is
not recommended.

irq

IRQ the driver is to service. Default is 0. Any other value is ignored and the card still services IRQ 0.

13.4.14. wic: WIC Radio IP bridge driver

This is a driver for the WIC parallel port radio bridge.

Example:

modprobe wic

It appears that devices wic0, wic1 and wic2 are directly related to corresponding lpN ports.

13.4.15. scc: Z8530 SCC kiss emulation driver

These cards are used to connect your Linux box to an amateur radio in order to communicate with other
computers. If you want to use this, read Documentation/networking/z8530drv.txt in the Linux
kernel source tree and HAM−HOWTO.

Example:

modprobe scc

Linux Loadable Kernel Module HOWTO

13.4.13. wavelan: WaveLAN driver 42

There are no module parameters.

13.4.16. 3c501: 3COM 3c501 Ethernet driver

This is a driver for 3COM's 3c501 Ethernet adapter.

Example: modprobe 3c501 io=0x280 irq=5

Parameters:

io

Address of I/O port on the card.

irq

IRQ the driver is to service. Default is 5.

If you don't specify an I/O port, the driver probes addresses 0x280 and 0x300.

13.4.17. 3c503: 3COM 3c503 driver

This is a driver for 3COM's 3c503 Ethernet adapter.

Example:

modprobe 3c503 io=0x300 irq=5 xcvr=0

Parameters:

io

Address of I/O port on the card.

irq

IRQ the driver is to service.

xcvr

Determines whether to use external tranceiver.

0

no

1

Linux Loadable Kernel Module HOWTO

13.4.16. 3c501: 3COM 3c501 Ethernet driver 43

yes

If you don't specify an I/O port, the driver probes addresses 0x300, 0x310, 0x330, 0x350, 0x250, 0x280,
0x2A0, and 0x2E0.

This module depends on module 8390.

13.4.18. 3c505: 3COM 3c505 driver

This is a driver for 3COM's 3c505 Ethernet adapter.

Example:

modprobe 3c503 io=0x300 irq=5 xcvr=0

Parameters:

io

Address of I/O port on the card.

irq

IRQ the driver is to service.

If you don't specify an I/O port, the driver probes addresses 0x300, 0x280, and 0x310.

This module depends on module 8390.

13.4.19. 3c507: 3COM 3c507 driver

This is a driver for 3COM's 3c507 Ethernet adapter.

Example:

modprobe 3c503 io=0x300 irq=5 xcvr=0

Parameters:

io

Address of I/O port on the card.

irq

IRQ the driver is to service.

If you don't specify an I/O port, the driver probes addresses 0x300, 0x320, 0x340, and 0x280.

Linux Loadable Kernel Module HOWTO

13.4.18. 3c505: 3COM 3c505 driver 44

This module depends on module 8390.

13.4.20. 3c509: 3COM 3c509/3c579 driver

This is a driver for 3COM's 3c507 and 3c579 Ethernet adapters.

Example:

modprobe 3c503 io=0x300 irq=5 xcvr=0

Parameters:

io

Address of I/O port on the card.

irq

IRQ the driver is to service.

Module load−time probing Works reliably only on EISA, ISA ID−PROBE IS NOT RELIABLE! Bind this
driver into the base kernel for now, if you need it auto−probing on an ISA−bus machine.

13.4.21. 3c59x: 3COM 3c590 series "Vortex" driver

This is a driver for the following 3COM Ethernet adapters:

3c590 Vortex 10Mbps. •
3c595 Vortex 100baseTX. •
3c595 Vortex 100baseT4. •
3c595 Vortex 100base−MII. •
EISA Vortex 3c597. •

Example:

modprobe 3c59x debug=1 options=0,,12

Parameters:

debug

A number selecting the level of debug messages.

options

This is a string of options numbers separated by commas. There is one option number for each
adapter that the driver drives (for the case that you have multiple Ethernet adapters in the system of
types driven by this driver). The order of the option numbers is the order of the cards assigned by the

Linux Loadable Kernel Module HOWTO

13.4.20. 3c509: 3COM 3c509/3c579 driver 45

PCI BIOS.

Each number represents a binary value. In that value, the lower 3 bits is the media type:

0

10baseT

1

10Mbs AUI

2

undefined

3

10base2 (BNC)

4

100base−TX

5

100base−FX

6

MII (not yet available)

7

Use default setting

The next bit (the "8" bit) is on for full duplex, off for half.

The next bit (the "16" bit) is on to enable bus−master, which is for experimental use only.

Details of the device driver implementation are at the top of the source file.

13.4.22. wd: Western Digital/SMC WD80*3 driver

This is a driver for the Western Digital WD80*3 Ethernet adapters.

Example:

modprobe wd io=0x300 irq=5 mem=0x0D0000 mem_end=0x0D8000

Linux Loadable Kernel Module HOWTO

13.4.22. wd: Western Digital/SMC WD80*3 driver 46

Parameters:

io

Address of I/O port on the card.

irq

IRQ the driver is to service.

mem

Shared memory address

mem_end

End of shared memory (address of next byte after it).

If you don't specify an I/O port, the driver probes 0x300, 0x280, 0x380, and 0x240.

If you don't specify an IRQ, the driver reads it from the adapter's EEPROM and with ancient cards that don't
have it, the driver uses autoIRQ.

The driver depends on module 8390.

13.4.23. smc−ultra: SMC Ultra/EtherEZ driver

This is a driver for the Western Digital WD80*3 Ethernet adapters.

Example:

modprobe smc−ultra io=0x200 irq=5

Parameters:

io

Address of I/O port on the card. If you don't specify this, the adapter probes 0x200, 0x220, 0x240,
0x280, 0x300, 0x340, and 0x380.

irq

IRQ the driver is to service. Default is the value read from the adapter's EEPROM.

This driver depends on module 8390.

Linux Loadable Kernel Module HOWTO

13.4.23. smc−ultra: SMC Ultra/EtherEZ driver 47

13.4.24. smc9194: SMC 9194 driver

This is a driver for SMC's 9000 series of Ethernet cards.

Example:

modprobe smc9194 io=0x200 irq=5 ifport=0

Parameters:

io

Address of I/O port on the card. If you don't specify this, the adapter probes 0x200, 0x220, etc. up
through 0x3E0.

irq

IRQ the driver is to service.

ifport

Type of Ethernet.

0

autodetect

1

TP

2

AUI (or 10base2)

The debug level is settable in the source code.

13.4.25. at1700: AT1700 driver

This is a driver for the AT1700 Ethernet adapter.

Example:

modprobe at1700 io=0x260 irq=5

Parameters:

io

Linux Loadable Kernel Module HOWTO

13.4.24. smc9194: SMC 9194 driver 48

Address of I/O port on the card. If you don't specify this, the adapter probes 0x260, 0x280, 0x2A0,
0x240, 0x340, 0x320, 0x380, and 0x300.

irq

IRQ the driver is to service.

13.4.26. e2100: Cabletron E21xx driver

Example:

modprobe e2100 io=0x300 irq=5 mem=0xd0000 xcvr=0

Parameters:

io

Address of I/O port on the card. If you don't specify this, the adapter probes 0x300, 0x280, 0x380,
and 0x220.

irq

IRQ the card is to generate and the driver is to service. (The driver sets this value in the card).

mem

shared memory address. Default is 0xd0000.

xcvr

0

Don't select external transceiver

1

Select external transceiver

This module depends on module 8390.

13.4.27. depca: DEPCA, DE10x, DE200, DE201, DE202, DE422 driver

This is a driver for the DEPCA, DE10x, DE200, DE201, DE202, and DE422 Ethernet adapters.

Example:

modprobe depca io=0x200 irq=7

Linux Loadable Kernel Module HOWTO

13.4.26. e2100: Cabletron E21xx driver 49

io

Address of I/O port on the card. If you don't specify this, the adapter probes 0x300, and 0x200 on an
ISA machine or 0x0c00 on an EISA machine.

irq

IRQ the driver is to service. Default is 7.

13.4.28. ewrk3: EtherWORKS 3 (DE203, DE204, DE205) driver

This is a driver for the EtherWORKS 3 (DE203, D3204, and DE205) Ethernet adapters.

Example:

modprobe ewrk3 io=0x300 irq=5

io

Address of I/O port on the card. Default is 0x300.

irq

IRQ the driver is to service. Default is 5.

On an EISA bus, this driver does EISA probing.

On an ISA bus, this driver does no autoprobing when loaded as an LKM. However, if you bind it into the
base kernel, it probes addresses 0x100, 0x120, etc. up through 0x3C0 except 0x1E0 and 0x320.

13.4.29. eexpress: EtherExpress 16 driver

This is a driver for the EtherExpress 16 Ethernet adapter.

Example:

modprobe eexpress io=0x300 irq=5

Parameters:

io

Address of I/O port on the card. If you don't specify this, the adapter probes 0x300, 0x270, 0x320,
and 0x340. 1

irq

IRQ the driver is to service. The default is the value read from the adapter's EEPROM.

Linux Loadable Kernel Module HOWTO

13.4.28. ewrk3: EtherWORKS 3 (DE203, DE204, DE205) driver 50

13.4.30. eepro: EtherExpressPro driver

This is a driver for the EtherExpressPro Ethernet adapter.

Example:

modprobe eepro io=0x200 irq=5

Parameters:

io

Address of I/O port on the card. If you don't specify this, the adapter probes 0x200, 0x240, 0x280,
0x2C0, 0x300, 0x320, 0x340, and 0x360.

irq

IRQ the driver is to service.

13.4.31. fmv18k: Fujitsu FMV−181/182/183/184 driver

This is a driver for the Fujitsu FMV−181, FMV−182, FMV−183, FMV−183, and FMV−184 Ethernet
adapters.

Example:

modprobe fmv18x io=0x220 irq=5

Parameters:

io

Address of I/O port on the card. If you don't specify this, the adapter probes 0x220, 0x240, 0x260,
0x280, 0x2a0, 0x2c0, 0x300, and 0x340.

irq

IRQ the driver is to service.

13.4.32. hp−plus: HP PCLAN+ (27247B and 27252A) driver

This is a driver for HP's PCLAN+ (27247B and 27252A) Ethernet adapters.

Example:

Linux Loadable Kernel Module HOWTO

13.4.30. eepro: EtherExpressPro driver 51

modprobe hp−plus io=0x200 irq=5

Parameters:

io

Address of I/O port on the card. If you don't specify this, the adapter probes 0x200, 0x240, 0x280,
0x2C0, 0x300, 0x320, and 0x340.

irq

IRQ the driver is to service. The default is the value the driver reads from the adapter's configuration
register.

This module depends on module 8390.

13.4.33. hp: HP PCLAN (27245, 27xxx) driver

This is a driver for HP's PCLAN (27245 and other 27xxx series) Ethernet adapters.

Example:

modprobe hp io=0x300 irq=5

Parameters:

io

Address of I/O port on the card. If you don't specify this, the adapter probes 0x300, 0x320, 0x340,
0x280, 0x2C0, 0x200, and 0x240.

irq

IRQ the driver is to service. If you don't specify this, the driver determines it by autoIRQ probing.

This module depends on module 8390.

13.4.34. hp100: HP 10/100VG PCLAN (ISA, EISA, PCI) driver

This is a driver for HP's 10/100VG PCLAN Ethernet adapters. It works with the ISA, EISA, and PCI versions.

Example:

modprobe hp100 hp100_port=0x100

Parameters:

Linux Loadable Kernel Module HOWTO

13.4.33. hp: HP PCLAN (27245, 27xxx) driver 52

hp100_port

Base address of I/O ports on the card. If you don't specify this, the driver autoprobes 0x100, 0x120,
etc. up through 0x3E0 on an ISA bus. It does EISA probing on an EISA bus.

13.4.35. eth16i: ICL EtherTeam 16i/32 driver

This is a driver for ICL's EtherTeam 16i (eth16i) and 32i (eth32i) Ethernet adapters.

Example:

modprobe eth16i io=0x2a0 irq=5

Parameters:

io

Address of I/O port on the card. If you don't specify this, the adapter probes the following adddresses.
For the eth16i adapter: 0x260, 0x280, 0x2A0, 0x340, 0x320, 0x380, and 0x300. For the eth32i:
0x1000, 0x2000, 0x3000, 0x4000, 0x5000, 0x6000, 0x7000, 0x8000, 0x9000, 0xA000, 0xB000,
0xC000, 0xD000, 0xE000, and 0xF000.

irq

IRQ the driver is to service. If you don't specify this, the driver determines it by autoIRQ probing.

13.4.36. ne: NE2000/NE1000 driver

This is a driver for the venerable NE2000 Ethernet adapter, its NE1000 forerunner, and all the generic
Ethernet adapters that emulate this de facto standard card.

Example:

modprobe ne io=0x300 irq=11

Parameters:

io

Address of I/O port on the card. This parameter is mandatory, but you may specify 0x000 to have the
driver autoprobe 0x300, 0x280, 0x320, 0x340, and 0x360.

irq

IRQ the driver is to service. If you don't specify this, the driver determines it by autoIRQ probing.

This module depends on module 8390.

Linux Loadable Kernel Module HOWTO

13.4.35. eth16i: ICL EtherTeam 16i/32 driver 53

13.4.37. ni52: NI5210 driver

This is a driver for the NI5210 Ethernet adapter.

Example:

modprobe ni52 io=0x360 irq=9 memstart=0xd0000 memend=0xd4000

13.4.38. ac3200: Ansel Communications EISA 3200 driver

This is a driver for the Ansel Communications EISA 3200 Ethernet adapter.

Example:

modprobe ac3200

This module depends on module 8390.

13.4.39. apricot: Apricot Xen−II on board ethernet driver

Example:

modprobe apricot io=0x300 irq=10

Parameters:

io

address of base I/O port on card.

irq

IRQ that driver is to service.

13.4.40. de4x5: DE425, DE434, DE435, DE450, DE500 driver

This is a driver for the DE425, DE434, DE435, DE450, and DE500 Ethernet adapters.

Example:

modprobe de4x5 io=0x000b irq=10 is_not_dec=0

Parameters:

Linux Loadable Kernel Module HOWTO

13.4.37. ni52: NI5210 driver 54

io

address of base I/O port.

irq

IRQ the driver is to service.

is_not_dec

For a non−DEC card using the DEC 21040, 21041, or 21140 chip, set this to 1.

13.4.41. tulip: DECchip Tulip (dc21x4x) PCI driver

Example:

modprobe tulip

Read Documentation/networking/tulip.txt in the Linux source tree.

13.4.42. dgrs: Digi Intl RightSwitch SE−X driver

This is a driver for the Digi International RightSwitch SE−X EISA and PCI boards. These boards have a 4
(EISA) or 6 (PCI) port Ethernet switch and a NIC combined into a single board.

There is a tool for setting up input and output packet filters on each port, called dgrsfilt.

The management tool lets you watch the performance graphically, as well as set the SNMP agent IP and IPX
addresses, IEEE Spanning Tree, and Aging time. These can also be set from the command line when the
driver is loaded.

There is also a companion management tool, called xrightswitch.

Examples:

modprobe dgrs debug=1 dma=0 spantree=0 hashexpire=300 ipaddr=199,86,8,221
modprobe ipxnet=111

Parameters:

debug

Level of debugging messages to print

dma

0

Linux Loadable Kernel Module HOWTO

13.4.41. tulip: DECchip Tulip (dc21x4x) PCI driver 55

Disable DMA on PCI card

1

Enable DMA on PCI card

spantree

0

Disable IEEE spanning tree

1

Enable IEEE spanning tree

hashexpire

Change address aging time, in seconds. Defaults is 300.

ipaddr

SNMP agent IP address. Value is IP address in dotted decimal notation, except with commas instead
of periods.

ipxnet

SNMP agent IPX network number

13.4.43. de600: D−Link DE600 pocket adapter driver

This is a driver for the D−Link DE600 pocket Ethernet adapter.

Example:

modprobe de600 de600_debug=0

Parameters:

de600_debug

The driver expects the adapter to be at port 0x378 and generate IRQ 7. This is the same as the DOS
lpt1 device. These are compile time options.

13.4.44. de620: D−Link DE620 pocket adapter driver

This is a driver for the D−Link DE620 pocket Ethernet adapter.

Linux Loadable Kernel Module HOWTO

13.4.43. de600: D−Link DE600 pocket adapter driver 56

Example:

modprobe de620 bnc=0 utp=0 io=0x378 irq=7

Parameters:

bnc

1

Network is 10Base2

0

Network is not 10Base2

utp

1

Network is 10BaseT

0

Network is not 10BaseT

io

I/O port address of port driver is to drive. Default is 0x378.

irq

IRQ driver is to service. Default is 7.

You can't specify both bnc=1 and utp=1.

13.4.45. ibmtr: Tropic chipset based token ring adapter driver

Example:

modprobe ibmtr io=0xa20 irq=5

Parameters:

io

I/O port address of port driver is to drive. Default is 0xa20.

irq

Linux Loadable Kernel Module HOWTO

13.4.45. ibmtr: Tropic chipset based token ring adapter driver 57

IRQ driver is to service. By default, the driver determines the IRQ by autoIRQ probing.

13.4.46. arcnet: ARCnet driver

Read The Fine Information in Documentation/networking/arcnet.txt in the Linux source tree.
Also Arcnet hardware information arcnet−hardware.txt is found in same place.

Example:

modprobe arcnet io=0x300 irq=2 shmem=0xd0000 device=arc1

Parameters:

io

I/O port address of port driver is to drive. If you don't specify this, the driver probes addresses 0x300,
0x2E0, 0x2F0, 0x2D0, 0x200, 0x210, 0x220, 0x230, 0x240, 0x250, 0x260, 0x270, 0x280, 0x290,
0x2A0, 0x2B0, 0x2C0, 0x310, 0x320, 0x330, 0x340, 0x350, 0x360, 0x370, 0x380, 0x390, 0x3A0,
0x3E0, and 0x3F0.

irq

IRQ driver is to service. By default, the driver determines the IRQ by autoIRQ probing.

device

device name.

13.4.47. isdn: basic ISDN functions

This module provides ISDN functions used by ISDN adapter drivers.

Setting up ISDN networking is a complicated task. Read documentation found in
Documentation/isdn in the Linux source tree.

Example:

modprobe isdn

There are no module parameters.

This module depends on module slhc.

Linux Loadable Kernel Module HOWTO

13.4.46. arcnet: ARCnet driver 58

13.4.48. icn: ICN 2B and 4B driver

This is a driver for the ICN 2B and ICN 4B ISDN adapters.

Example:

modprobe icn portbase=0x320 membase=0xd0000 icn_id=idstring icn_id2=idstring2

Parameters:

portbase

Address of the base I/O port on the adapter. Defaults is 0x320.

membase

Address of shared memory. Default is 0xd0000.

icn_id

idstring for the first adapter. Must start with a character! This parameter is required.

icn_id2

idstring for the second adapter. Must start with a character! This parameter is required with the
double card.

This module depends on module isdn.

13.4.49. pcbit: PCBIT−D driver

This is a driver for the PCBIT−D ISDN adapter driver.

Example:

modprobe pcbit mem=0xd0000 irq=5

Parameters:

mem

Shared memory address. Default is 0xd0000

irq

IRQ the driver is to service. Default is 5.

This module depend on module isdn.

Linux Loadable Kernel Module HOWTO

13.4.48. icn: ICN 2B and 4B driver 59

13.4.50. teles: Teles/NICCY1016PC/Creatix driver

This is a driver for the Teles/NICCY1016PC/Creatix ISDN adapter. It can drive up to 16 cards.

Example:

modprobe teles io=0xd0000,15,0xd80,2 teles_id=idstring

Parameters:

io

This is a whole collection of parameters in one. It's syntax is
io=card1options [,card2options ,...] where card1options is a set of options for the
first card, etc.

The syntax of card1options, etc. is sharedmem, irq, portbase, dprotocol

sharedmem

Address of shared memory. Default 0xd0000

irq

IRQ driver is to service.

portbase

Address of base I/O port.

dprotocol

D−channel protocol of the card

1

1TR6

2

EDSS1. This is the default.

teles_id

Driver ID for accessing with utilities and identification when using a line monitor. Value must start
with a character! Default: none.

The driver determines the type of card from the port, irq and shared memory address:

port == 0, shared memory != 0 −> Teles S0−8 •

Linux Loadable Kernel Module HOWTO

13.4.50. teles: Teles/NICCY1016PC/Creatix driver 60

port != 0, shared memory != 0 −> Teles S0−16.0 •
port != 0, shared memory == 0 −> Teles S0−16.3 •

This module depends on module isdn.

13.5. CDROM Device Drivers

13.5.1. axtcd: Aztech/Orchid/Okano/Wearnes/TXC/CDROM driver

This is a driver for the Aztech, Orchid, Okano, Wearnes, TXC, and CDROM devices (which have special
non−SCSI non−ATA interfaces).

Example:

 modprobe aztcd aztcd=0x340

Parameters:

aztcd

address of base I/O port

Read Documentation/cdrom/aztcd in the Linux source tree for full information.

13.5.2. gscd: Goldstar R420 CDROM driver

This is a driver for the Goldstar R420 CDROM drive, which does not use either an ATA or SCSI interface.

Example:

modprobe gscd gscd=0x340

Parameters:

gscd

address of base I/O port. Default is 0x340, which will work for most applications. You select the
address of the drive with the PN801−1 through PN801−4 jumpers on the Goldstar Interface Card.
Appropriate settings are: 0x300, 0x310, 0x320, 0x330, 0x340, 0x350, 0x360, 0x370, 0x380, 0x390,
0x3A0, 0x3B0, 0x3C0, 0x3D0, 0x3E0, and 0x3F0.

13.5.3. sbpcd: Sound Blaster CDROM driver

This is a driver for the Matsushita, Panasonic, Creative, Longshine, and TEAC CDROM drives that don't
attach via ATA or SCSI.

Linux Loadable Kernel Module HOWTO

13.5. CDROM Device Drivers 61

Example:

modprobe sbpcd sbpcd=0x340

Parameters:

sbpcd

address of base I/O port

An additional parameter is an SBPRO setting, as described in Documentation/cdrom/sbpcd in the
Linux source tree.

13.5.4. mcd: Mitsumi CDROM driver

This is a driver for Mitsumi CDROM drives that don't attach via ATA or SCSI. It does not handle XA or
multisession.

Example:

modprobe mcd mcd=0x300,11,0x304,5

Parameters:

mcd

This is a comma separated list of i/o base addresses and IRQs, in pairs.

13.5.5. mcdx: Mitsumi XA/MultiSession driver

This driver is like mcd, only it has XA and multisession functions.

Example:

modprobe mcdx mcdx=0x300,11,0x304,5

13.5.6. optcd: Optics Storage DOLPHIN 8000AT CDROM driver

This is the driver for the so−called "dolphin" CDROM drive form Optics Storage, with the 34−pin
Sony−compatible interface. For the ATA−compatible Optics Storage 8001 drive, you will want the ATAPI
CDROM driver. The driver also seems to work with the Lasermate CR328A.

Example:

modprobe optcd optcd=0x340

Linux Loadable Kernel Module HOWTO

13.5.4. mcd: Mitsumi CDROM driver 62

Parameters:

optcd

address of base I/O port

13.5.7. cm206: Philips/LMS CM206 CDROM driver

This is the driver for the Philips/LMS cm206 CDROM drive in combination with the cm260 host adapter
card.

Example:

modprobe cm206 cm206=0x300,11

Parameters:

cm206

The address of the base I/O port the driver is to drive and the IRQ the driver is to service, separated
by a comma. It doesn't matter what order you put them in, and you may specify just one, in which
case the other defaults.

13.5.8. sjcd: Sanyo CDR−H94A CDROM driver

Example:

modprobe sjcd sjcd_base=0x340

Parameters:

sjcd_base

address of the base I/O port the driver is to drive. Default is 0x340.

The driver uses no IRQ and no DMA channel.

13.5.9. isp16: ISP16/MAD16/Mozart soft configurable cdrom driver

This is a driver for the ISP16 or MAD16 or Mozart soft configurable cdrom interface.

Example:

modprobe isp16 isp16_cdrom_base=0x340 isp16_cdrom_irq=3
 isp16_cdrom_dma=0 isp16_cdrom_type=Sanyo

Linux Loadable Kernel Module HOWTO

13.5.7. cm206: Philips/LMS CM206 CDROM driver 63

Parameters:

isp16_cdrom_base

address of base I/O port the driver is to drive. Valid values are 0x340, 0x320, 0x330, and 0x360.

isp16_cdrom_irq

IRQ the driver is to service. Valid values are 0, 3, 5, 7, 9, 10, and 11.

isp16_cdrom_dma

DMA channel the driver is to use with the device. Valid values are 0, 3, 5, 6, and 7.

isp16_cdrom_type

Type of device being driven. Valid values are noisp16, Sanyo, Panasonic, Sony and
Mitsumi. Note that these values are case sensitive.

13.5.10. cdu31a: Sony CDU31A/CDU33A CDROM driver

Example:

 modprobe cdu31a cdu31a_port=0x340 cdu31a_irq=5

Parameters:

cdu31a_port

address of base I/O port the driver is to drive. This parameter is mandatory.

cdu31a_irq

IRQ the driver is to service. If you don't specify this, the driver does not use interrupts.

13.5.11. sonycd535: Sony CDU535 CDROM driver

Example:

modprobe sonycd535 sonycd535=0x340

Parameters:

sonycd535

address of the base I/O port the driver is to drive.

Linux Loadable Kernel Module HOWTO

13.5.10. cdu31a: Sony CDU31A/CDU33A CDROM driver 64

13.6. Filesystem Drivers

13.6.1. minix: Minix filesystem driver

Example:

modprobe minix

There are no module parameters.

13.6.2. ext: "Extended" filesystem driver

Example:

modprobe ext

There are no module parameters.

13.6.3. ext2: "Second extended" filessystem driver

Example:

modprobe ext2

There are no module parameters.

13.6.4. xiafs: xiafs filesystem driver

Example:

modprobe xiafs

There are no module parameters.

13.6.5. fat: DOS FAT filesystem functions

This module provides services for use by the MSDOS and VFAT filesystem drivers.

Example:

modprobe fat

There are no module parameters.

Linux Loadable Kernel Module HOWTO

13.6. Filesystem Drivers 65

13.6.6. msdos: MSDOS filesystem driver

Example:

modprobe msdos

There are no module parameters.

This module depends on the module fat.

13.6.7. vfat: VFAT (Windows−95) filesystem driver

Example:

modprobe vfat

There are no module parameters.

This module depends on module fat.

13.6.8. umsdos: UMSDOS filesystem driver

This is a driver for the UMSDOS filesystem type, which is a unix style filesystem built on top of an MSDOS
FAT filesystem.

Example:

modprobe vfat

There are no module parameters.

This module depends on the fat and msdos modules.

13.6.9. nfs: NFS filesystem driver

Example:

modprobe nfs

There are no module parameters.

Linux Loadable Kernel Module HOWTO

13.6.6. msdos: MSDOS filesystem driver 66

13.6.10. smbfs: SMB filesystem driver

SMBFS is a filesystem type which has an SMB protocol interface. This is the protocol Windows for
Workgroups, Windows NT or Lan Manager use to talk to each other. SMBFS was inspired by Samba, the
program written by Andrew Tridgell that turns any unix host into a file server for DOS or Windows clients.
See ftp://nimbus.anu.edu.au/pub/tridge/samba/ for this interesting program suite and lots of more information
on SMB and NetBIOS over TCP/IP. There you also find explanation for concepts like netbios name or share.

To use SMBFS, you need a special mount program, which can be found in the ksmbfs package, found on
ftp://ibiblio.org/pub/Linux/system/Filesystems/smbfs.

Example:

modprobe smbfs

There are no module parameters

13.6.11. ncpfs: NCP (Netware) filesystem driver

NCPFS is a filesystem type which has an NCP protocol interface, designed by the Novell Corporation for
their NetWare product. NCP is functionally similar to the NFS used in the TCP/IP community. To mount a
Netware filesystem, you need a special mount program, which can be found in the ncpfs package. Homesite
for ncpfs is ftp.gwdg.de/pub/linux/misc/ncpfs, but Ibiblio and its many mirrors will have it as well.

Related products are Linware and Mars_nwe, which will give Linux partial NetWare Server functionality.

Mars_nwe can be found on ftp.gwdg.de/pub/linux/misc/ncpfs.

Example:

modprobe ncpfs

There are no module parameters.

This module depends on module ipx.

13.6.12. isofs: ISO 9660 (CDROM) filesystem driver

Example:

modprobe isofs

There are no module parameters.

Linux Loadable Kernel Module HOWTO

13.6.10. smbfs: SMB filesystem driver 67

ftp://nimbus.anu.edu.au/pub/tridge/samba/
ftp://ibiblio.org/pub/Linux/system/Filesystems/smbfs
ncpfs
ncpfs

13.6.13. hpfs: OS/2 HPFS filesystem driver

This filesystem driver for OS/2's HPFS filesystem provides only read−only access.

Example:

modprobe hpfs

There are no module parameters.

13.6.14. sysv: System V and Coherent filesystem driver

This is the implementation of the SystemV/Coherent filesystem type for Linux.

It implements all of

Xenix FS •
SystemV/386 FS •
Coherent FS •

Example:

modprobe sysv

There are no module parameters.

13.6.15. affs: Amiga FFS filesystem driver

Example:

modprobe affs

There are no module parameters.

13.6.16. ufs: UFS filesystem driver

Apparently for mounting disks with FreeBSD and/or Sun partitions. No documentation exists, apart from The
Source.

This filesystem driver provides only read−only access.

Example:

modprobe ufs

There are no module parameters.

Linux Loadable Kernel Module HOWTO

13.6.13. hpfs: OS/2 HPFS filesystem driver 68

13.7. Miscellaneous Device Driver

13.7.1. misc: device driver for "miscellaneous" character devices

A whole bunch of device types that don't appear in large enough numbers on a system to deserve major
numbers of their own share Major Number 10 and are collectively called "miscellaneous" character devices.
This module provides the common interface to serve that major number, but there are individual drivers for
the specific device types. Those drivers register themselves with this driver.

Example:

modprobe misc

There are no module parameters.

13.8. Serial Device Drivers

13.8.1. serial: serial communication port (UART) device driver

This driver drives conventional serial ports (UARTs), but not some of the specialized high performance
multi−port devices.

NOTE: serial is required by other modules, such as ppp and slip. Also it is required by serial mice and
accordingly by gpm. However this isn't the regular kind of dependency that is detected by module handling
tools, so you must load serial manually.

Example:

modprobe serial

There are no module parameters.

13.8.2. cyclades: Cyclades async mux device driver

Example:

 modprobe cyclades

There are no module parameters.

The intelligent boards also need to have their firmware code downloaded to them. This is done via a user
level application supplied in the driver package called stlload. Compile this program where ever you dropped
the package files, by typing make. In its simplest form you can then type stlload in this directory and that
will download firmware into board 0 (assuming board 0 is an EasyConnection 8/64 board). To download to

Linux Loadable Kernel Module HOWTO

13.7. Miscellaneous Device Driver 69

an ONboard, Brumby or Stallion do:

Read the information in the file Documentation/stallion.txt in the Linux source tree.

13.8.3. stallion: Stallion EasyIO or EC8/32 device driver

The intelligent boards also need to have their firmware code downloaded to them. This is done via a user
level application supplied in the driver package called stlload.

Read the information in the file Documentation/stallion.txt in the Linux source tree.

Example:

 modprobe stallion

There are no module parameters.

13.8.4. istallion: Stallion EC8/64, ONboard, Brumby device driver

The intelligent boards also need to have their firmware code downloaded to them. This is done via a user
level application supplied in the driver package called stlload.

Read the information at /usr/src/linux/drivers/char/README.stallion.

Example:

modprobe istallion

There are no module parameters.

13.8.5. riscom8: SDL RISCom/8 card device driver

Example:

modprobe riscom8 iobase=0xXXX iobase1=0xXXX iobase2=...

This driver can drive up to 4 boards at time.

13.9. Parallel Device Drivers

13.9.1. lp: Parallel printer device driver

Example:

Linux Loadable Kernel Module HOWTO

13.8.3. stallion: Stallion EasyIO or EC8/32 device driver 70

 modprobe lp.o io=0x378 irq=0

This driver probes ports 0x278, 0x378, and 0x3bc.

Note: loading lp without any parameters will grab all parallel ports.

13.10. Bus Mouse Device Drivers

13.10.1. atixlmouse: ATIXL busmouse driver

Example:

modprobe atixlmouse

There are no parameters.

This module depends on module misc.

13.10.2. busmouse: Logitech busmouse driver

Example:

modprobe busmouse

There are no module parameters.

This module depends on module misc.

13.10.3. msbusmouse: Microsoft busmouse driver

Example:

modprobe msbusmouse

There are no module parameters.

This module depends on module misc.

13.10.4. psaux: PS/2 mouse (aka "auxiliary device") driver

Example:

modprobe psaux

Linux Loadable Kernel Module HOWTO

13.10. Bus Mouse Device Drivers 71

There are no module parameters.

This module depends on module misc.

13.11. Tape Device Drivers

For SCSI tape device drivers, see Section 13.3. There are no LKMs for QIC−02 tape devices, but there is a
device driver you can bind into the base kernel.

13.11.1. ftape: floppy tape (QIC−80/Travan) device driver

Example:

modprobe ftape tracing=3

Optional parameter tracing can take following values

0

bugs

1

+ errors

2

+ warnings

3

+ information

4

+ more information

5

+ program flow

6

+ fdc/dma info

7

Linux Loadable Kernel Module HOWTO

13.11. Tape Device Drivers 72

+ data flow

8

+ everything else

The default is 3.

13.12. Watchdog Timers

13.12.1. WDT: WDT Watchdog timer device driver

Example:

modprobe wdt

There are no module parameters.

The device address is hardcoded as 0x240. The IRQ is hardcoded as 14.

This module depends on module misc.

13.12.2. softdog: Software Watchdog Timer

Example:

 modprobe softdog

There are no module parameters.

This module depends on module misc.

13.12.3. pcwd: Berkshire Products PC Watchdog Driver

Example:

modprobe pcwd

There are no module parameters.

This module depends on module misc.

Linux Loadable Kernel Module HOWTO

13.12. Watchdog Timers 73

13.13. Sound Device Drivers

Configuring sound is a complex task. Read the files in directory Documention/sound in the Linux
source tree.

Example:

modprobe sound

Option: dma_buffsize=32768

Linux Loadable Kernel Module HOWTO

13.13. Sound Device Drivers 74

14. Maintenance Of This Document
This HOWTO is enthusiastically maintained by Bryan Henderson <bryanh@giraffe−data.com>. If
you find something incorrect or incomplete or can't understand something, Bryan wants to know so maybe
the next reader can be saved the trouble you had.

The source for this document is DocBook SGML, and is available from the Linux Documentation Project.

14. Maintenance Of This Document 75

mailto:bryanh@giraffe-data.com
http://www.ldp.org

15. History
I have derived this (in 2001) from the HOWTO of the same name by Laurie Tischler, dated 1997. While I
have kept all of the information from that original document (where it is still useful), I have rewritten the
presentation entirely and have added a lot of other information. The original HOWTO's primary purpose was
to document LKM parameters.

The original HOWTO was first released (Release 1.0) June 20, 1996, with a second release (1.1) October 20,
1996.

The first release of Bryan's rewrite was in June 2001.

15. History 76

16. Copyright
Here is Lauri Tischler's copyright notice from the original document from which this is derived:

This document is Copyright 1996© by Lauri Tischler. Permisson is granted to make and distribute verbatim
copies of this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this document under the conditions for
verbatim copying, provided that this copyright notice is included exactly as in the original, and that the entire
resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this document into another language, under the
above conditions for modified versions.

Bryan Henderson, the current maintainer and contributing author of this document, licenses it under the same
terms as above. His work is Copyright 2001©.

Notes

[1]
You probably know this type of disk as "IDE". Strictly speaking, IDE is an incorrect appelation. IDE
refers to the "Integrated Drive Electronics" which all modern disk drives, notably all SCSI disk drives,
use. The first IDE drives in common usage were ATA, and the names kind of got confused. ATA, like
SCSI, is a precise specification of electrical signals, commands, etc.

16. Copyright 77

	Table of Contents
	1. Preface
	2. Introduction to Linux Loadable Kernel Modules
	2.1. Terminology
	2.2. History of Loadable Kernel Modules
	2.3. The Case For Loadable Kernel Modules
	2.4. What LKMs Can't Do
	2.5. What LKMs Are Used For

	3. Making Loadable Kernel Modules
	4. LKM Utilities
	5. How To Insert And Remove LKMs
	5.1. Intelligent Loading Of LKMs - Modprobe
	5.2. Kerneld
	5.3. /proc/modules

	6. LKM - Base Kernel Compatibility
	7. How To Boot Without A Disk Device Driver
	8. About Module Parameters
	9. Persistent Data
	10. Technical Details
	10.1. How They Work
	10.2. The .modinfo Section
	10.3. The __ksymtab And .kstrtab Sections

	11. Writing Your Own Loadable Kernel Module
	11.1. Improving On Use Counts

	12. Related Documentation
	13. Individual Modules
	13.1. Executable Interpreters
	13.1.1. binfmt_aout: executable interpreter for a.out format
	13.1.2. binfmt_elf: executable interpreter for ELF format
	13.1.3. binfmt_java: executable interpreter for Java bytecode

	13.2. Block Device Drivers
	13.2.1. floppy: floppy disk driver
	13.2.2. loop: loop device driver
	13.2.3. linear: linear (non-RAID) disk array device driver
	13.2.4. raid0: RAID-0 device driver
	13.2.5. rd: ramdisk device driver
	13.2.6. xd: XT disk device driver

	13.3. SCSI Drivers
	13.3.1. scsi_mod: SCSI mid-level driver
	13.3.2. sd_mod: SCSI high-level driver for disk devices
	13.3.3. st: SCSI high-level driver for tape devices
	13.3.4. sr_mod: SCSI high-level driver for CD-ROM drives
	13.3.5. sg: SCSI high-level driver for generic SCSI devices
	13.3.6. wd7000: SCSI low-level driver for 7000FASST
	13.3.7. aha154x: SCSI low-level driver for Adaptec AHA152X/2825
	13.3.8. aha1542: SCSI low-level driver for Adaptec AHA1542
	13.3.9. aha1740: SCSI low-level driver for Adaptec AHA1740 EISA
	13.3.10. aic7xxx: SCSI low-level driver for Adaptec AHA274X/284X/294X
	13.3.11. advansys: SCSI low-level driver for AdvanSys/Connect.com
	13.3.12. in2000: SCSI low-level driver for Always IN2000
	13.3.13. BusLogic: SCSI low-level driver for BusLogic
	13.3.14. dtc: SCSI low-level driver for DTC3180/3280
	13.3.15. eata: SCSI low-level driver for EATA ISA/EISA
	13.3.16. eata_dma: SCSI low-level driver for EATA-DMA
	13.3.17. eata_pio: SCSI low-level driver for EATA-PIO
	13.3.18. fdomain: SCSI low-level driver for Future Domain 16xx
	13.3.19. NCR5380: SCSI low-level driver for NCR5380/53c400
	13.3.20. NCR53c406a: SCSI low-level driver for NCR53c406a
	13.3.21. 53c7,8xx.o: SCSI low-level driver for NCR53c7,8xx
	13.3.22. ncr53c8xx: SCSI low-level driver for PCI-SCS NCR538xx family
	13.3.23. ppa: low-level SCSI driver for IOMEGA parallel port ZIP drive
	13.3.24. pas16: SCSI low-level driver for PAS16
	13.3.25. qlogicfas: SCSI low-level driver for Qlogic FAS
	13.3.26. qlogicisp: SCSI low-level driver for Qlogic ISP
	13.3.27. seagate: SCSI low-level driver for Seagate, Future Domain
	13.3.28. t128: SCSI low-level driver for Trantor T128/T128F/T228
	13.3.29. u14-34f: SCSI low-level driver for UltraStor 14F/34F
	13.3.30. ultrastor: low-level SCSI driver for UltraStor

	13.4. Network Device Drivers
	13.4.1. bsd_comp: optional BSD compressor for PPP
	13.4.2. slhc: SLHC compressor for PPP
	13.4.3. 8390: General NS8390 Ethernet driver core
	13.4.4. dummy: Dummy network interface driver
	13.4.5. eql: serial line load balancer
	13.4.6. dlci: frame relay DLCI driver
	13.4.7. sdla: Sangoma S502A FRAD driver
	13.4.8. plip: PLIP network interface driver
	13.4.9. ppp: PPP network protocol driver
	13.4.10. slip: SLIP network protocol driver
	13.4.11. baycom: BAYCOM AX.25 amateur radio driver
	13.4.12. strip: STRIP (Metricom starmode radio IP) driver
	13.4.13. wavelan: WaveLAN driver
	13.4.14. wic: WIC Radio IP bridge driver
	13.4.15. scc: Z8530 SCC kiss emulation driver
	13.4.16. 3c501: 3COM 3c501 Ethernet driver
	13.4.17. 3c503: 3COM 3c503 driver
	13.4.18. 3c505: 3COM 3c505 driver
	13.4.19. 3c507: 3COM 3c507 driver
	13.4.20. 3c509: 3COM 3c509/3c579 driver
	13.4.21. 3c59x: 3COM 3c590 series "Vortex" driver
	13.4.22. wd: Western Digital/SMC WD80*3 driver
	13.4.23. smc-ultra: SMC Ultra/EtherEZ driver
	13.4.24. smc9194: SMC 9194 driver
	13.4.25. at1700: AT1700 driver
	13.4.26. e2100: Cabletron E21xx driver
	13.4.27. depca: DEPCA, DE10x, DE200, DE201, DE202, DE422 driver
	13.4.28. ewrk3: EtherWORKS 3 (DE203, DE204, DE205) driver
	13.4.29. eexpress: EtherExpress 16 driver
	13.4.30. eepro: EtherExpressPro driver
	13.4.31. fmv18k: Fujitsu FMV-181/182/183/184 driver
	13.4.32. hp-plus: HP PCLAN+ (27247B and 27252A) driver
	13.4.33. hp: HP PCLAN (27245, 27xxx) driver
	13.4.34. hp100: HP 10/100VG PCLAN (ISA, EISA, PCI) driver
	13.4.35. eth16i: ICL EtherTeam 16i/32 driver
	13.4.36. ne: NE2000/NE1000 driver
	13.4.37. ni52: NI5210 driver
	13.4.38. ac3200: Ansel Communications EISA 3200 driver
	13.4.39. apricot: Apricot Xen-II on board ethernet driver
	13.4.40. de4x5: DE425, DE434, DE435, DE450, DE500 driver
	13.4.41. tulip: DECchip Tulip (dc21x4x) PCI driver
	13.4.42. dgrs: Digi Intl RightSwitch SE-X driver
	13.4.43. de600: D-Link DE600 pocket adapter driver
	13.4.44. de620: D-Link DE620 pocket adapter driver
	13.4.45. ibmtr: Tropic chipset based token ring adapter driver
	13.4.46. arcnet: ARCnet driver
	13.4.47. isdn: basic ISDN functions
	13.4.48. icn: ICN 2B and 4B driver
	13.4.49. pcbit: PCBIT-D driver
	13.4.50. teles: Teles/NICCY1016PC/Creatix driver

	13.5. CDROM Device Drivers
	13.5.1. axtcd: Aztech/Orchid/Okano/Wearnes/TXC/CDROM driver
	13.5.2. gscd: Goldstar R420 CDROM driver
	13.5.3. sbpcd: Sound Blaster CDROM driver
	13.5.4. mcd: Mitsumi CDROM driver
	13.5.5. mcdx: Mitsumi XA/MultiSession driver
	13.5.6. optcd: Optics Storage DOLPHIN 8000AT CDROM driver
	13.5.7. cm206: Philips/LMS CM206 CDROM driver
	13.5.8. sjcd: Sanyo CDR-H94A CDROM driver
	13.5.9. isp16: ISP16/MAD16/Mozart soft configurable cdrom driver
	13.5.10. cdu31a: Sony CDU31A/CDU33A CDROM driver
	13.5.11. sonycd535: Sony CDU535 CDROM driver

	13.6. Filesystem Drivers
	13.6.1. minix: Minix filesystem driver
	13.6.2. ext: "Extended" filesystem driver
	13.6.3. ext2: "Second extended" filessystem driver
	13.6.4. xiafs: xiafs filesystem driver
	13.6.5. fat: DOS FAT filesystem functions
	13.6.6. msdos: MSDOS filesystem driver
	13.6.7. vfat: VFAT (Windows-95) filesystem driver
	13.6.8. umsdos: UMSDOS filesystem driver
	13.6.9. nfs: NFS filesystem driver
	13.6.10. smbfs: SMB filesystem driver
	13.6.11. ncpfs: NCP (Netware) filesystem driver
	13.6.12. isofs: ISO 9660 (CDROM) filesystem driver
	13.6.13. hpfs: OS/2 HPFS filesystem driver
	13.6.14. sysv: System V and Coherent filesystem driver
	13.6.15. affs: Amiga FFS filesystem driver
	13.6.16. ufs: UFS filesystem driver

	13.7. Miscellaneous Device Driver
	13.7.1. misc: device driver for "miscellaneous" character devices

	13.8. Serial Device Drivers
	13.8.1. serial: serial communication port (UART) device driver
	13.8.2. cyclades: Cyclades async mux device driver
	13.8.3. stallion: Stallion EasyIO or EC8/32 device driver
	13.8.4. istallion: Stallion EC8/64, ONboard, Brumby device driver
	13.8.5. riscom8: SDL RISCom/8 card device driver

	13.9. Parallel Device Drivers
	13.9.1. lp: Parallel printer device driver

	13.10. Bus Mouse Device Drivers
	13.10.1. atixlmouse: ATIXL busmouse driver
	13.10.2. busmouse: Logitech busmouse driver
	13.10.3. msbusmouse: Microsoft busmouse driver
	13.10.4. psaux: PS/2 mouse (aka "auxiliary device") driver

	13.11. Tape Device Drivers
	13.11.1. ftape: floppy tape (QIC-80/Travan) device driver

	13.12. Watchdog Timers
	13.12.1. WDT: WDT Watchdog timer device driver
	13.12.2. softdog: Software Watchdog Timer
	13.12.3. pcwd: Berkshire Products PC Watchdog Driver

	13.13. Sound Device Drivers
	Notes

	14. Maintenance Of This Document
	15. History
	16. Copyright

