
Remote Serial Console HOWTO

Mark F. Komarinski

           mkomarinski@valinux.com

Revision History

Revision 0.1 2001−03−20 Revised by: mfk

First revision

Most UNIX−based systems have the concept of a serial console.  Linux is no exception to this, and this
document covers how to  set up your hardware to use a serial console. 



Table of Contents
1. Introduction.....................................................................................................................................................1

1.1. Copyright Information......................................................................................................................1
1.2. Disclaimer.........................................................................................................................................1
1.3. Credits...............................................................................................................................................1
1.4. Feedback...........................................................................................................................................2

2. Why use Serial Consoles?...............................................................................................................................3

3. Configuring Linux for Serial Consoles.........................................................................................................4
3.1. Configuring LILO and the Linux Kernel..........................................................................................4
3.2. Configuring getty for use with serial ports.......................................................................................5

4. Serial Port Applications.................................................................................................................................6
4.1. Minicom............................................................................................................................................6

5. Cabling serial ports together..........................................................................................................................7

Remote Serial Console HOWTO

i



1. Introduction

1.1. Copyright Information

This document is copyrighted (c) 2001 Mark F. Komarinski and is  distributed under the terms of the Linux
Documentation Project  (LDP) license, stated below. 

Unless otherwise stated, Linux HOWTO documents are  copyrighted by their respective authors. Linux
HOWTO documents may  be reproduced and distributed in whole or in part, in any medium  physical or
electronic, as long as this copyright notice is  retained on all copies. Commercial redistribution is allowed and
encouraged; however, the author would like to be notified of any  such distributions. 

All translations, derivative works, or aggregate works  incorporating any Linux HOWTO documents must be
covered under this  copyright notice. That is, you may not produce a derivative work  from a HOWTO and
impose additional restrictions on its  distribution. Exceptions to these rules may be granted under  certain
conditions; please contact the Linux HOWTO coordinator at  the address given below. 

In short, we wish to promote dissemination of this  information through as many channels as possible.
However, we do  wish to retain copyright on the HOWTO documents, and would like to  be notified of any
plans to redistribute the HOWTOs. 

If you have any questions, please contact  <linux−howto@metalab.unc.edu>

1.2. Disclaimer

No liability for the contents of this documents can be accepted.  Use the concepts, examples and other content
at your own risk.  As this is a new edition of this document, there may be errors  and inaccuracies, that may of
course be damaging to your system.  Proceed with caution, and although this is highly unlikely,  the author(s)
do not take any responsibility for that. 

All copyrights are held by their by their respective owners, unless  specifically noted otherwise.  Use of a term
in this document  should not be regarded as affecting the validity of any trademark  or service mark. 

Naming of particular products or brands should not be seen  as endorsements. 

You are strongly recommended to take a backup of your system  before major installation and backups at
regular intervals. 

1.3. Credits

This HOWTO is based on  /usr/src/linux/Documentation/serial−consold.txt,  written by
Miquel van Smoorenburg (<miquels AT cistron.nl>).  Many thanks to Miquel for the information in
his document. 

1. Introduction 1

mailto:linux-howto@metalab.unc.edu
mailto:miquels AT cistron.nl


1.4. Feedback

Feedback is most certainly welcome for this document. Without  your submissions and input, this document
wouldn't exist. Please  send your additions, comments and criticisms to the following  email address :
<mkomarinski AT valinux.com>. 

Remote Serial Console HOWTO

1.4. Feedback 2

mailto:mkomarinski AT valinux.com


2. Why use Serial Consoles?
Serial consoles do not appear to have much going for  them.  They are slow, require special null−modem
cables,  and do not provide a graphical interface.  But what is  going for them is considerable.  Serial cables are
standard equipment and can run over RJ−45 cables,  can run up to 200 ft (about 100m) at 9600bps.  Serial
concentrators can run the consoles of over 32  ports into a central box, so all the consoles in a  cluster can be
accessed from a single location. 

You will not require a crash cart, KVM switch, or keyboard,  montior, or mouse.  Because of the serial
concentrator, you can  access the console of a machine in a colocation cage from  your desktop. 

The real limiting factor so far has been that even though you can  access the Linux console via a serial port,
most x86 hardware was  not set to send its POST and BIOS information to the serial port.  More and more
"server" motherboards are starting to  include full serial support in the BIOS, so you can access the  BIOS and
make boot changes via the serial port. 

2. Why use Serial Consoles? 3



3. Configuring Linux for Serial Consoles
There is two parts to getting a serial console set up under  Linux.  First, you must tell Linux to redirect its
console output  to the serial port.  Second, you must set up mgetty to start  a login process on the serial port
once the kernel has completed booting.  Some distributions use mingetty for the video console, but mingetty
has no serial port support.  You will instead want to use mgetty.  A third (optional) configuration is to set the
hardware BIOS to redirect  its POST and BIOS information to the serial port.  Check your motherboard
documentation for more information about this. 

3.1. Configuring LILO and the Linux Kernel

If you're using LILO as your bootloader, you can quickly test  using serial console from Linux by entering: 

LILO: Linux console=ttyS0,9600n8

Assuming the LILO tag for your Linux kernel is called  "Linux".  Change this for the name of your kernel.  The
generic format for the console option is console=device,options.  You can give multiple console statements,
and kernel messages will go to  all listed devices, but the last one listed will be used as  /dev/console. 

device The device entry to use as the console without  /dev/.
You can use tty0 to get normal behavior,  ttyx to put
the console on another virtual console, or ttySx to put
the console on a serial port.

options This is mostly used for passing options to the serial
port.  The format for this is BPN, where B is speed in
bps (so use 9600,  19200, 38400, etc.).  The P is parity
and is one of three letters:  n  for no parity, e for even
parity, and o for odd parity.  The N is the  number of
data bits, and is usually either 7 or 8.  The default is
9600n8.  Most users will want to use the default, or
increase the  speed to 19200 bps. 

You should see the Linux kernel start through the decompression process  then you will see no more
on−screen information until the kernel has  completed and mgetty starts up a login prompt on the screen.  If
you are  monitoring the serial port, you'll see the Linux bootup information coming  over the serial port.
However, you probably will not see a login prompt  on the serial port (yet).  We'll cover that in  Section 3.2. 

Once you are sure this is working, you can now edit LILO to pass this  information to the kernel each time it
boots.  You can also configure  LILO to send its prompt to the serial port.  Fire up your favorite editor  of
choice and load up the /etc/lilo.conf file.  You will want to add  two lines, one to the general configuration and
one to the specific  kernels you want to use. 

serial=0,9600n8
append="console=tty0 console=ttyS0,9600n8"

The append statement contains the statement we listed above, and tells  Linux to send its output to the serial
port.  The serial command goes to  LILO, and tells it to open port 0 (ttyS0, or COM1).  The options for  serial

3. Configuring Linux for Serial Consoles 4



are the same as to the console statement. 

Note:  Make sure the serial port settings for serial and console are the  same.  If they are
different, you will need to change your serial  port application between LILO and the kernel,
which becomes very  inconvenient. 

Re−run /sbin/lilo and reboot.  You should now see  everything except the login prompt on the serial port.
Information  should still be going to the monitor, just in case you have problems  with the serial port. 

3.2. Configuring getty for use with serial ports

Some distributions may ship with mingetty that does not support serial  ports.  The first thing you have to do is
make sure the version  of getty you are using supports serial ports.  Both agetty and mgetty  do this.  So run off
now using your favorite packaging system to make  sure this is the case.  Don't worry, this document will still
be here  when you get back. 

Back so soon?  Great!  Let's get that serial port configured. 

You will want to make sure that all your serial port settings are  consistent.  No sense in making getty run at
9600bps, while  LILO and the kernel are talking 19200. 

To get login prompts to appear on the serial port, edit the  /etc/inittab file and add a line similar to  the
following: 

s0:2345:respawn:/sbin/getty ttyS0 DT9600

The format for entries in inittab are covered in most basic Linux and UNIX  books, but to repeat, each field is
separated by a colon (:) and  represent: 

s0 − Arbitrary entry for inittab.  As long as this entry doesn't  appear anywhere else in inittab, you're
okay.  We named  this entry s0 because it's for ttyS0. 

• 

2345 − run levels where this entry gets called.  If we switch to  runlevel 1, this getty process will be
shut down. 

• 

respawn − re−run the program if it dies.  We want this to happen  so that a new login prompt will
appear when you log out of the  console. 

• 

/sbin/getty ttyS0 DT9600 − the command to run.  In this case, we're  telling getty to connect to
/dev/ttyS0 using the settings for DT9600  which exist in /etc/gettydefs.  This entry  represents a
dumb terminal running at 9600bps.  There are other  entries that run at different speeds. 

• 

The entries in /etc/inittab will be loaded into  init when root sends a HUP signal. 

# kill −HUP 1

Note:  Remember that init always has a PID of 1. 

Now that getty is set up, you will be able to go  from powerup to login prompt all over the serial port 

Remote Serial Console HOWTO

3.2. Configuring getty for use with serial ports 5



4. Serial Port Applications
This section covers applications and some configuration information  that you can use to look at your serial
console, now that  your Linux boxes are talking to the serial port. 

4.1. Minicom

Minicom is one of the easier serial port applications to use.  It is  curses based, so it's a full screen application
with a status bar,  menus, and an easy−to−use interface.  It is installed on most  distributions, and initially has
to be run as the root user.  In  some cases, minicom will be installed suid root,  so anyone will be able to access
the configurations.  Check the  documentation for your particular distribution to see how it's  configured. 

Security of minicom is set by the  /etc/minicom.users file.  Usernames can that are  listed along with a
configuration can use the listed configurations.  This allows only authorized users to connect to the serial
ports. 

Minicom creates individual configurations to  separate files.  Configure the serial port as needed, then save the
configuration.  Files are kept in /etc with a  prefix of minirc. 

4. Serial Port Applications 6



5. Cabling serial ports together
Since you will be connecting two DTEs together, you will need to  have a null modem run between the two
devices.  A null modem  crosses transmit and receive, and ties a few status lines together  so the application can
open the port.  This null modem can be a  dongle that connects to the cable, or can be built into the cable.  A
dongle will get expensive if you have a large number of cables, so  it is usually easier to get cables with the
null modem  built in. 

Most PC hardware these days use DB−9 connectors, giving 9 pins for  transmitting data and status, which is
fine for us.  Pre−built DB−9  cables can be had for a few dollars for a few feet of cable.  More  flexible is
building a DB−9 to RJ−45 connector and building  the null modem into that.  The RJ−45 connector then
accepts  regular 10BaseT cables that can be custom−built, or with varying  legths.  This gives a lot of flexibiliy
in arranging cables, since  each cable can be the correct length to run between machines.  Little  extra cable is
left lying around. 

DB−9 to RJ−45 connectors can be purchased unassembled since  there are no real standards for making this
conversion.  So long as Tx and Rx cross and CTS RTS cross, you have a null  modem connection.  The cabling
I have here comes from my own  design, and works just fine.  Note that there have to be two different  DB−9 to
RJ−45 connectors because of the way pins are switched.  I labeled  them as "1" and "2".  They can be placed  on
either end of the cable. 

Table 1. DB9 to RJ−25 connector

Connector 1 Connector 2

DB−9 RJ−45 DB−9 RJ−45

1 5 1 5

2 6 2 4

3 4 3 6

4 7 4 7

5 3 5 3

6 2 6 2

7 1 7 8

8 8 8 1

9 n/c 9 n/c

5. Cabling serial ports together 7


	Table of Contents
	1. Introduction
	1.1. Copyright Information
	1.2. Disclaimer
	1.3. Credits
	1.4. Feedback

	2. Why use Serial Consoles?
	3. Configuring Linux for Serial Consoles
	3.1. Configuring LILO and the Linux Kernel
	3.2. Configuring getty for use with serial ports

	4. Serial Port Applications
	4.1. Minicom

	5. Cabling serial ports together

