
Software Release Practice HOWTO

Eric Steven Raymond

Thyrsus Enterprises

    esr@thyrsus.com

Copyright © 2000 by Eric S. Raymond

Revision History

Revision 3.2 2001−07−11 Revised by: esr

Note about not relying on proprietary components.

Revision 3.1 2001−02−22 Revised by: esr

LDP Styleguide fixes.

Revision 3.0 2000−08−12 Revised by: esr

First DocBook version.  Advice on SourceForge and a major section  on documentation practice added.

This HOWTO describes good release practices for Linux open−source projects.  By following these practices,
you will make it as easy as possible for users to build your code and use it, and for other developers to
understand your code and cooperate with you to improve it.

This document is a must−read for novice developers.  Experienced developers should review it when they are
about to release a new project.  It will be revised periodically to reflect the evolution of good−practice
standards.

http://www.tuxedo.org/~esr/


Table of Contents
1. Introduction.....................................................................................................................................................1

1.1. Why this document?.........................................................................................................................1
1.2. New versions of this document.........................................................................................................1

2. Good project− and archive− naming practice..............................................................................................2
2.1. Use GNU−style names with a stem and major.minor.patch numbering..........................................2
2.2. But respect local conventions where appropriate.............................................................................3
2.3. Try hard to choose a name prefix that is unique and easy to type....................................................4

3. Good licensing and copyright practice: the theory......................................................................................5
3.1. Open source and copyrights..............................................................................................................5
3.2. What qualifies as open source...........................................................................................................5

4. Good licensing and copyright practice: the practice...................................................................................7
4.1. Make yourself or the FSF the copyright holder................................................................................7
4.2. Use a license conformant to the Open Source Definition.................................................................7
4.3. Don't write your own license if you can possibly avoid it................................................................7

5. Good development practice............................................................................................................................8
5.1. Write either pure ANSI C or a portable scripting language..............................................................8
5.2. Don't rely on proprietary code..........................................................................................................8
5.3. Follow good C portability practices..................................................................................................8
5.4. Use autoconf/automake/autoheader..................................................................................................8
5.5. Sanity−check your code before release............................................................................................9
5.6. Sanity−check your documentation and READMEs before release..................................................9

6. Good distribution−making practice............................................................................................................10
6.1. Make sure tarballs always unpack into a single new directory.......................................................10
6.2. Have a README...........................................................................................................................10
6.3. Respect and follow standard file naming practices.........................................................................10
6.4. Design for Upgradability................................................................................................................12
6.5. Provide RPMs.................................................................................................................................12

7. Good documentation practice......................................................................................................................13
7.1. Good practice in the present...........................................................................................................13
7.2. Good practice for the future............................................................................................................14

8. Good communication practice.....................................................................................................................16
8.1. Announce to c.o.l.a and Freshmeat.................................................................................................16
8.2. Announce to a relevant topic newsgroup........................................................................................16
8.3. Have a website................................................................................................................................16
8.4. Host project mailing lists................................................................................................................16
8.5. Release to major archives...............................................................................................................17

9. Good project−management practice...........................................................................................................18

Software Release Practice HOWTO

i



1. Introduction

1.1. Why this document?

There is a large body of good−practice traditions for open−source code that helps other people port, use, and
cooperate with developing it.  Some of these conventions are traditional in the Unix world and predate Linux;
others have developed recently in response to particular new tools and technologies such as the World Wide
Web.

This document will help you learn good practice.  It is organized into topic sections, each containing a series
of checklist items.  Think of these as a pre−flight checklist for your software distribution.

1.2. New versions of this document

This document will be posted monthly to the newsgroups comp.os.linux.answers.  You can also view the
latest version of this HOWTO on the World Wide Web via the URL
http://www.linuxdoc.org/LDP/HOWTO/Software−Release−Practice.html.

Feel free to mail any questions or comments about this HOWTO to  Eric S. Raymond,
<esr@snark.thyrsus.com>.

1. Introduction 1

News:comp.os.linux.answers
http://www.linuxdoc.org/LDP/HOWTO/Software-Release-Practice.html
mailto:esr@snark.thyrsus.com


2. Good project− and archive− naming practice
As the load on maintainers of archives like Metalab, the PSA site and CPAN increases, there is an increasing
trend for submissions to be processed partly or wholly by programs (rather than entirely by a human).

This makes it more important for project and archive−file names to fit regular patterns that computer
programs can parse and understand.

2.1. Use GNU−style names with a stem and
major.minor.patch numbering.

It's helpful to everybody if your archive files all have GNU−like names −− all−lower−case alphanumeric
stem prefix, followed by a dash, followed by a version number, extension, and other suffixes.

Let's suppose you have a project you call `foobar' at version 1, release 2, level 3.  If it's got just one archive
part (presumably the sources), here's what its names should look:

foobar−1.2.3.tar.gz

The source archive

foobar.lsm

The LSM file (assuming you're submitting to Metalab).

Please don't use these:

foobar123.tar.gz

This looks to many programs like an archive for a project called`foobar123' with no version number.

foobar1.2.3.tar.gz

This looks to many programs like an archive for a project called `foobar1' at version 2.3.

foobar−v1.2.3.tar.gz

Many programs think this goes with a project called `foobar−v1'.

foo_bar−1.2.3.tar.gz

The underscore is hard for people to speak, type, and remember.

FooBar−1.2.3.tar.gz

Unless you like looking like a marketing weenie.  This is also hard for people to speak, type, and
remember.

2. Good project− and archive− naming practice 2



If you have to differentiate between source and binary archives, or between different kinds of binary, or
express some kind of build option in the file name, please treat that as a file extension to go after the version
number. That is, please do this:

foobar−1.2.3.src.tar.gz

sources

foobar−1.2.3.bin.tar.gz

binaries, type not specified

foobar−1.2.3.bin.ELF.tar.gz

ELF binaries

foobar−1.2.3.bin.ELF.static.tar.gz

ELF binaries statically linked

foobar−1.2.3.bin.SPARC.tar.gz

SPARC binaries

Please don't use names like `foobar−ELF−1.2.3.tar.gz', because programs have a hard time telling type
infixes (like `−ELF') from the stem.

A good general form of name has these parts in order:

project prefix 1. 
dash 2. 
version number 3. 
dot 4. 
"src" or "bin" (optional) 5. 
dot or dash (dot preferred) 6. 
binary type and options (optional) 7. 
archiving and compression extensions 8. 

2.2. But respect local conventions where appropriate

Some projects and communities have well−defined conventions for names and version numbers that aren't
necessarily compatible with the above advice. For instance, Apache modules are generally named like
mod_foo, and have both their own version number and the version of Apache with which they work.
Likewise, Perl modules have version numbers that can be treated as floating point numbers (e.g., you might
see 1.303 rather than 1.3.3), and the distributions are generally named Foo−Bar−1.303.tar.gz for version
1.303 of module Foo::Bar. (Perl itself, on the other hand, switched to using the conventions described un this
document in late 1999.)

Software Release Practice HOWTO

2.2. But respect local conventions where appropriate 3



Look for and respect the conventions of specialized communities and developers; for general use, follow the
above guidelines.

2.3. Try hard to choose a name prefix that is unique and
easy to type

The stem prefix should be common to all a project's files, and it should be easy to read, type, and remember.
So please don't use underscores.  And don't capitalize or BiCapitalize without extremely good reason −− it
messes up the natural human−eyeball search order and looks like some marketing weenie trying to be clever.

It confuses people when two different projects have the same stem name.  So try to check for collisions before
your first release. Two good places to check are the index file of Metalab and the appindex at Freshmeat.
Another good place to check is SourceForge; do a name search there.

Software Release Practice HOWTO

2.3. Try hard to choose a name prefix that is unique and easy to type 4

http://metalab.unc.edu/pub/Linux
http://www.freshmeat.net
http://www.sourceforge.net


3. Good licensing and copyright practice: the
theory
The license you choose defines the social contract you wish to set up among your co−developers and users.
The copyright you put on the software will function mainly as a legal assertion of your right to set license
terms on the software and derivative works of the software.

3.1. Open source and copyrights

Anything that is not public domain has a copyright, possibly more than one.  Under the Berne Convention
(which has been U.S. law since 1978), the copyright does not have to be explicit.  That is, the authors of a
work hold copyright even if there is no copyright notice.

Who counts as an author can be very complicated, especially for software that has been worked on by many
hands.  This is why licenses are important.  By setting out the terms under which material can be used, they
grant rights to the users that protect them from arbitrary actions by the copyright holders.

In proprietary software, the license terms are designed to protect the copyright.  They're a way of granting a
few rights to users while reserving as much legal territory is possible for the owner (the copyright holder).
The copyright holder is very important, and the license logic so restrictive that the exact technicalities of the
license terms are usually unimportant.

In open−source software, the situation is usually the exact opposite; the copyright exists to protect the license.
The only rights the copyright holder always keeps are to enforce the license.  Otherwise, only a few rights are
reserved and most choices pass to the user.  In particular, the copyright holder cannot change the terms on a
copy you already have.  Therefore, in open−source software the copyright holder is almost irrelevant −− but
the license terms are very important.

Normally the copyright holder of a project is the current project leader or sponsoring organization.  Transfer
of the project to a new leader is often signaled by changing the copyright holder. However, this is not a hard
and fast rule; many open−source projects have multiple copyright holders, and there is no instance on record
of this leading to legal problems.

Some projects choose to assign copyright to the Free Software Foundation, on the theory that it has an
interest in defending open source and lawyers available to do it.

3.2. What qualifies as open source

For licensing purposes, we can distinguish several different kinds of rights that a license may convey.  Rights
to copy and redistribute, rights to use, rights to modify for personal use, and rights to redistribute modified
copies.  A license may restrict or attach conditions to any of these rights.

The Open Source Initiative is the result of a great deal of thought about what makes software ``open source''
or (in older terminology) ``free''. Its constraints on licensing require that:

An unlimited right to copy be granted. 1. 

3. Good licensing and copyright practice: the theory 5

http://www.opensource.org


An unlimited right to use be granted. 2. 
An unlimited right to modify for personal use be granted. 3. 

The guidelines prohibit restrictions on redistribution of modified binaries; this meets the needs of software
distributors, who need to be able to ship working code without encumbrance.  It allows authors to require that
modified sources be redistributed as pristine sources plus patches, thus establishing the author's intentions
and an ``audit trail'' of any changes by others.

The OSD is the legal definition of the `OSI Certified Open Source' certification mark, and as good a
definition of ``free software'' as anyone has ever come up with.  All of the standard licenses (MIT, BSD,
Artistic, and GPL/LGPL) meet it (though some, like GPL, have other restrictions which you should
understand before choosing it).

Note that licenses which allow noncommercial use only do not qualify as open−source licenses, even if they
are decorated with ``GPL'' or some other standard license.  They discriminate against particular occupations,
persons, and groups. They make life too complicated for CD−ROM distributors and others trying to spread
open−source software commercially.

Software Release Practice HOWTO

3. Good licensing and copyright practice: the theory 6



4. Good licensing and copyright practice: the
practice
Here's how to translate the theory above into practice:

4.1. Make yourself or the FSF the copyright holder

In some cases, if you have a sponsoring organization behind you with lawyers, you might wish to give
copyright to that organization.

4.2. Use a license conformant to the Open Source Definition

The Open Source Definition is the community gold standard for licenses.  The OSD is not a license itself;
rather, it defines a minimum set of rights that a license must guarantee in order to be considered an
open−source license.  The OSD, and supporting materials, may be found at the web site of the Open Source
Initiative.

4.3. Don't write your own license if you can possibly avoid
it.

The widely−known OSD−conformant licenses have well−established interpretive traditions.  Developers (and,
to the extent they care, users) know what they imply, and have a reasonable take on the risks and tradeoffs
they involve.  Therefore, use one of the standard licenses carried on the OSI site if at all possible.

If you must write your own license, be sure to have it certified by OSI.  This will avoid a lot of argument and
overhead.  Unless you've been through it, you have no idea how nasty a licensing flamewar can get; people
become passionate because the licenses are regarded as almost−sacred covenants touching the core values of
the open−source community.

Furthermore, the presence of an established interpretive tradition may prove important if your license is ever
tested in court.  At time of  writing (early 2001) there is no case law either supporting or invalidating any
open−source license.  However, it is a legal doctrine (at least in the U.S., and probably in other common−law
countries such as England and the rest of the British Commonwealth) that courts are supposed to  interpret
licenses and contracts according to the expectations and practices of the community in which they originated.

4. Good licensing and copyright practice: the practice 7

http://www.opensource.org
http://www.opensource.org


5. Good development practice
Most of these are concerned with ensuring portability, not only across Linuxes but to other Unixes as well.
Being portable to other Unixes  is not just a worthy form of professionalism and hackerly politeness,  it's
valuable insurance against future changes in Linux itself.

Finally, other people will try to build your code on non−Linux systems; portability minimizes the number of
annoying perplexed email messages you will get.

5.1. Write either pure ANSI C or a portable scripting
language

For portability and stability, you should write either in ANSI C or a scripting language that is guaranteed
portable because it has just one cross−platform implementation.

Scripting languages that qualify include Python, Perl, Tcl, Emacs Lisp, and PHP.  Plain old shell does
not qualify; there are too many different implementations with subtle idiosyncracies, and the shell
environment is subject to disruption by user customizations such as shell aliases.

Java holds promise as a portable language, but the Linux−available  implementations are still scratchy and
poorly integrated with Linux. Java is still a bleeding−edge choice, though one likely to become more popular
as it matures.

5.2. Don't rely on proprietary code

Don't rely on proprietary languages, libraries, or other code. In the open−source community this is considered
rude.  Open−source  developers don't trust what they can't see the source code of.

5.3. Follow good C portability practices

If you are writing C, do feel free to use the full ANSI features −− including function prototypes, which will
help you spot cross−module inconsistancies.  The old−style K&R compilers are history.

On the other hand, do not assume that GCC−specific  features such as the `−pipe' option or nested functions
are available. These will come around and bite you the second somebody ports to a non−Linux, non−GCC
system.

5.4. Use autoconf/automake/autoheader

If you're writing C, use autoconf/automake/autoheader to handle portability issues, do system−configuration
probes, and tailor your makefiles.  People building from sources today expect to be able to type "configure;
make" and get a clean build −− and rightly so.

5. Good development practice 8



5.5. Sanity−check your code before release

If you're writing C, test−compile with −Wall and clean up the errors at least once before each release.  This
catches a surprising number of errors.  For real thoroughness, compile with −pedantic as well.

For Python projects, the  PyChecker program can be a useful check.  It's not out of beta yet, but nevertheless
often catches nontrivial errors.

If you're writing Perl, check your code with perl −c (and maybe −T, if applicable).  Use perl −w and 'use strict'
religiously.  (See the Perl documentation for discussion.)

5.6. Sanity−check your documentation and READMEs
before release

Run a spell−checker on them.  If you look like you can't spell and don't care, people will assume your code is
sloppy and careless too.

Software Release Practice HOWTO

5.5. Sanity−check your code before release 9

http://sourceforge.net/projects/pychecker


6. Good distribution−making practice
These guidelines describe how your distribution should look when someone downloads, retrieves and
unpacks it.

6.1. Make sure tarballs always unpack into a single new
directory

The single most annoying mistake newbie developers make is to build tarballs that unpack the files and
directories in the distribution into the current directory, potentially stepping on files already located there.
Never do this!

Instead, make sure your archive files all have a common directory part named after the project, so they will
unpack into a single top−level  directory directly beneath the current one.

Here's a makefile trick that, assuming your distribution directory is named `foobar' and SRC contains a list of
your distribution files, accomplishes this.

foobar−$(VERS).tar.gz:
        @ls $(SRC) | sed s:^:foobar−$(VERS)/: >MANIFEST
        @(cd ..; ln −s foobar foobar−$(VERS))
        (cd ..; tar −czvf foobar/foobar−$(VERS).tar.gz `cat foobar/MANIFEST`)
        @(cd ..; rm foobar−$(VERS))

6.2. Have a README

Have a file called README or READ.ME that is a roadmap of your source distribution.  By ancient
convention, this is the first file intrepid explorers will read after unpacking the source.

Good things to have in the README include:

A brief description of the project. 1. 
A pointer to the project website (if it has  one) 2. 
Notes on the developer's build environment and potential portability problems. 3. 
A roadmap describing important files and subdirectories. 4. 
Either build/installation instructions or a pointer to a file containing same (usually INSTALL). 5. 
Either a maintainers/credits list or a pointer to a file containing same (usually CREDITS). 6. 
Either recent project news or a pointer to a file containing same (usually NEWS). 7. 

6.3. Respect and follow standard file naming practices

Before even looking at the README, your intrepid explorer will have scanned the filenames in the top−level
directory of your unpacked distribution.  Those names can themselves convey information.  By adhering to
certain standard naming practices, you can give the explorer valuable clues about what to look in next.

6. Good distribution−making practice 10



Here are some standard top−level file names and what they mean.  Not every distribution needs all of these.

README or READ.ME

the roadmap file, to be read first

INSTALL

configuration, build, and installation instructions

CREDITS

list of project contributers

NEWS

recent project news

HISTORY

project history

COPYING

project license terms (GNU convention)

LICENSE

project license terms

MANIFEST

list of files in the distribution

FAQ

plain−text Frequently−Asked−Questions document for the project

TAGS

generated tag file for use by Emacs or vi

Note the overall convention that filenames with all−caps names are human−readable metainformation about
the package, rather than build components (TAGS is an exception).

Having a FAQ can save you a lot of grief.  When a question about the project comes up often, put it in the
FAQ; then direct users to read the FAQ before sending questions or bug reports.  A well−nurtured FAQ can
decrease the support burden on the project maintainers by an order of magnitude or more.

Having a HISTORY or NEWS file with timestamps in it for each release is valuable.  Among other things, it
may help establish prior art if you are ever hit with a patent−infringement lawsuit (this hasn't happened to

Software Release Practice HOWTO

6. Good distribution−making practice 11



anyone yet, but best to be prepared).

6.4. Design for Upgradability

Your software will change over time as you put out new releases.  Some of these changes will not be
backward−compatible.  Accordingly, you should give serious thought to designing your installation layouts so
that multiple installed versions of your code can coexist on the same system.  This is especially important for
libraries −− you can't  count on all your client programs to upgrade in lockstep with your API changes.

The Emacs, Python, and Qt projects have a good convention for handling this; version−numbered directories.
Here's how an installed Qt library hierarchy looks (${ver} is the version number):

/usr/lib/qt
/usr/lib/qt−${ver}
/usr/lib/qt−${ver}/bin          # Where you find moc
/usr/lib/qt−${ver}/lib          # Where you find .so
/usr/lib/qt−${ver}/include      # Where you find header files

With this organization, you can have multiple versions coexisting.  Client programs have to specify the library
version they want, but that's a small price to pay for not having the interfaces break on them.

6.5. Provide RPMs

The de−facto standard format for installable binary packages is that used by the Red Hat Package manager,
RPM.  It's featured in the most popular Linux distribution, and supported by effectively all other Linux
distributions (except Debian and Slackware; and Debian can install from RPMs).

Accordingly, it's a good idea for your project site to provide installable RPMs as well as source tarballs.

It's also a good idea for you to include in your source tarball the RPM spec file, with a production that makes
RPMs from it in your Makefile. The spec file should have the extension `.spec'; that's how the rpm −t option
finds it in a tarball.

For extra style points, generate your spec file with a shellscript that automatically plugs in the correct version
number by analyzing the Makefile or a version.h.

Note: if you supply source RPMs, use BuildRoot to make the program be built in /tmp or /var/tmp.  If you
don't, during the course of running the make install part of your build, the install will install the files in the
real final places. This will happen even if there are file collisions, and even if you didn't want to install the
package at all. When you're done, the files will have been installed and your system's RPM database will not
know about it. Such badly behaved SRPMs are a minefield and should be eschewed.

Software Release Practice HOWTO

6.4. Design for Upgradability 12



7. Good documentation practice
The most important good documentation practice is to actually write some!  Too many programmers omit
this.  But here are two good reasons to do it:

Your documentation can be your design document. The best time to write it is before you type a
single line of code, while you're thinking out what you want to do.  You'll find that the process of
describing the way you want your program to work in natural language focuses your mind on the
high−level questions about  what it should do and how it should work.  This may save you a lot of
effort later. 

1. 

Your documentation is an advertisement for the  quality of your code. Many people take poor, scanty,
or illiterate documentation for a program as a sign that the programmer is sloppy or careless of
potential users' needs. Good documentation, on the other hand, conveys a message of intelligence and
professionalism. If your program has to compete with other programs, better make sure your
documentation is at least as good as theirs lest potential users write you off without a second look. 

2. 

This HOWTO wouldn't be the place for a course on technical writing even if that were practical.  So we'll
focus here on the formats and tools available for composing and rendering documentation.

Though Unix and the open−source community have a long tradition of hosting powerful
document−formatting tools, the plethora of different formats has meant that documentation has tended to be
fragmented and difficult for users to browse or index in a coherent way. We'll summarize the uses, strengths,
and weaknesses of the common  documentation formats. Then we'll make some recommendations for good
practice.

7.1. Good practice in the present

Here are the documentation markup formats now in widespread use among open−source developers.  When
we speak of "presentation" markup, we mean markup that controls the document's appearance explicitly
(such as a font change).  When we speak of "structural" markup, we mean markup that describes the logical
structure of the document (like a section break or emphasis tag.)  And when we speak of "indexing", we mean
the process  of extracting from a collection of documents a searchable collection of topic pointers that users
can employ to reliably find material of interest across the entire collection.

man pages

The most most common format, inherited from Unix, a primitive form of presentation markup.  The
man(1) command provides a pager and a stone−age search facility.  No support for images or
hyperlinks or indexing. Renders to Postscript for printing fairly well.  Doesn't render to HTML at all
well (essentially as flat text).  Tools are preinstalled on all Linux systems.

Man page format is not bad for command summaries or short reference documents intended to jog
the memory of an experienced user.  It starts to creak under the strain for programs with complex
interfaces and many options, and collapses entirely if you need to maintain a set of documents with
rich cross−references (the markup has no support for hyperlinks).

HTML

7. Good documentation practice 13



Increasingly common since the Web exploded in 1993−1994. Markup is partly structural, mostly
presentation. Browseable through any web browser. Good support for images and hyperlinks.
Limited built−in facilities for indexing, but good indexing and search−engine technologies exist and
are widely deployed.  Renders to Postscript for printing pretty well.  HTML tools are now universally
available.

HTML is very flexible and suitable for many kinds of documentation. Actually, it's too flexible; it
shares with man page format the problem that it's hard to index automatically because a lot of the
markup describes presentation rather than document structure.

Texinfo

Texinfo is the documentation format used by the Free Software Foundation. It's a set of macros on
top of the powerful TeX formatting engine. Mostly structural, partly presentation.  Browseable
through Emacs or a standalone info program.  Good support for hyperlinks, none for images.  Good
indexing for both print and on−line forms; when you install a Texinfo document, a pointer to it is
automatically added to a browsable "dir" document listing all the Texinfo documents on your system.
Renders to excellent Postscript and useable HTML.  Texinfo tools are preinstalled on most Linux
systems, and available at the Free Software Foundation website.

Texinfo is a good design, quite usable for typesetting books as well as small on−line documents, but
like HTML it's a sort of amphibian −− the markup is part structural, part presentation, and the
presentation part creates problems for rendering. 

DocBook

DocBook is a large, elaborate markup format based on SGML (more recent versions on XML).
Unlike the other formats described here it is entirely structural with no presentation markup.
Excellent support for images and hyperlinks.  Good support for indexing.  Renders well to HTML,
acceptably to Postscript for printing (quality is improving as the tools evolve).  Tools and
documentation are available at the DocBook website.

DocBook is excellent for large, complex documents; it was designed specifically to support technical
manuals and rendering them in multiple output formats.  Its drawbacks are complexity, a not entirely
mature (though rapidly improving) toolset, and introductory−level documentation that is scanty and
(too often) highly obfuscated.

7.2. Good practice for the future

In July of 2000 representatives from several important open−source project groups (including GNOME,
KDE, the Free Software Foundation, the Linux Documentation Project, and the Open Source Initiative) held
a summit conference in Monterey, California. The goal was to try and settle on common practices and
common documentation interchange formats, so that a much richer and more unified body of documentation
can evolve.

Concretely, the goal everyone has in view is to support a kind of documentation package which, when
installed on a system, is immediately integrated into a rich system−wide index of documents in such a way
that they can all be browsed through a uniform interface and searched as a unit. From the steps GNOME and
KDE have already taken in this direction,  it was already understood that this would require a structural rather

Software Release Practice HOWTO

7.2. Good practice for the future 14

http://www.gnu.org
http://www.docbook.org/


than presentation markup standard.

The meeting endorsed a trend which has been clear for a while; key open−source projects are moving or have
already moved to DocBook as a master format for their documentation.

The participants also settled on using the `Dublin core' metadata format (an international standard developed
by librarians concerned with the indexing of digital material) to support document indexing; details of that
are still being worked out, and will probably result in some additions to the DocBook markup to support
embedding Dublin Core metadata in  DocBook documents.

The direction is clear; more use of DocBook, with auxiliary standards that support automatically indexing
Docbook documents based on their index tags and Dublin core metadata.  There are pieces still missing from
this picture, but they will be filled in.  The older presentation−based markups' days are numbered.  (This
HOWTO was moved to DocBook in August 2000.)

Thus, people starting new open−source projects will be ahead of the curve, and probably saving themselves a
nasty conversion process later, if they go with DocBook as a master format from the beginning.

Software Release Practice HOWTO

7.2. Good practice for the future 15



8. Good communication practice
Your software and documentation won't do the world much good if nobody but you knows it exists.  Also,
developing a visible presence for the project on the Internet will assist you in recruiting users and
co−developers.  Here are the standard ways to do that.

8.1. Announce to c.o.l.a and Freshmeat

Announce new releases to comp.os.linux.announce.  Besides being widely read itself, this group is a major
feeder for web−based what's−new sites like Freshmeat.

8.2. Announce to a relevant topic newsgroup

Find USENET topics group directly relevant to your application, and announce there as well.  Post only where
the function of the code is relevant, and exercise restraint.

If (for example) you are releasing a program written in Perl that queries IMAP servers, you should certainly
post to comp.mail.imap.  But you should probably not post to comp.lang.perl unless the program is also an
instructive example of cutting−edge Perl techniques.

Your announcement should include the URL of a project website.

8.3. Have a website

If you intend try to build any substantial user or developer community around your project, it should have a
website.  Standard things to have on the website include:

The project charter (why it exists, who the audience is, etc). • 
Download links for the project sources. • 
Instructions on how to join the project mailing list(s). • 
A FAQ (Frequently Asked Questions) list. • 
HTMLized versions of the project documentation • 
Links to related and/or competing projects. • 

Some project sites even have URLs for anonymous access to the master source tree.

8.4. Host project mailing lists

It's standard practice to have a private development list through which project collaborators can communicate
and exchange patches.  You may also want to have an announcements list for people who want to be kept
informed of the project's process.

8. Good communication practice 16

news:comp.os.linux.announce
http://www.freshmeat.net


If you are running a project named `foo'. your developer list might be foo−dev or foo−friends; your
announcement list might be foo−announce.

8.5. Release to major archives

For the last several years, the Metalab archive has been the most important interchange location for Linux
software.

Since it was launched in fall 1999,  SourceForge has exploded in popularity.  It is not just an archive and
distribution site, though you can use it that way.  It is an entire free project−hosting service that tries to offer a
complete set of tools for open−source development groups −− web and archive space, mailing lists,
bug−tracking, chat forums, CVS repositories, and other services.

Other important locations include:

the Python Software Activity site (for software written in Python). • 
the CPAN, the Comprehensive Perl Archive Network, (for software written in Perl). • 

Software Release Practice HOWTO

8.5. Release to major archives 17

http://www.metalab.unc.edu/pub/Linux/
http://www.sourceforge.net
http://www.python.org
http://language.perl.com/CPAN


9. Good project−management practice
Managing a project well when all the participants are volunteers presents some unique challenges.  This is too
large a topic to cover in a HOWTO. Fortunately, there are some useful white papers available that will help
you understand the major issues.

For discussion of basic development organization and the  release−early−release−often `bazaar mode', see The
Cathedral and the Bazaar.

For discussion of motivational psychology, community customs, and conflict resolution, see Homesteading
the Noosphere.

For discussion of economics and appropriate business models, see  The Magic Cauldron.

These papers are not the last word on open−source development.  But they were the first serious analyses to
be written, and have yet to be superseded (though the author hopes they will be someday).

9. Good project−management practice 18

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://www.tuxedo.org/~esr/writings/homesteading/
http://www.tuxedo.org/~esr/writings/homesteading/
http://www.tuxedo.org/~esr/writings/magic-cauldron/

	Table of Contents
	1. Introduction
	1.1. Why this document?
	1.2. New versions of this document

	2. Good project- and archive- naming practice
	2.1. Use GNU-style names with a stem and major.minor.patch numbering.
	2.2. But respect local conventions where appropriate
	2.3. Try hard to choose a name prefix that is unique and easy to type

	3. Good licensing and copyright practice: the theory
	3.1. Open source and copyrights
	3.2. What qualifies as open source

	4. Good licensing and copyright practice: the practice
	4.1. Make yourself or the FSF the copyright holder
	4.2. Use a license conformant to the Open Source Definition
	4.3. Don't write your own license if you can possibly avoid it.

	5. Good development practice
	5.1. Write either pure ANSI C or a portable scripting language
	5.2. Don't rely on proprietary code
	5.3. Follow good C portability practices
	5.4. Use autoconf/automake/autoheader
	5.5. Sanity-check your code before release
	5.6. Sanity-check your documentation and READMEs before release

	6. Good distribution-making practice
	6.1. Make sure tarballs always unpack into a single new directory
	6.2. Have a README
	6.3. Respect and follow standard file naming practices
	6.4. Design for Upgradability
	6.5. Provide RPMs

	7. Good documentation practice
	7.1. Good practice in the present
	7.2. Good practice for the future

	8. Good communication practice
	8.1. Announce to c.o.l.a and Freshmeat
	8.2. Announce to a relevant topic newsgroup
	8.3. Have a website
	8.4. Host project mailing lists
	8.5. Release to major archives

	9. Good project-management practice

