
The Unix and Internet Fundamentals HOWTO

Eric Raymond

 esr@thyrsus.com

Revision History

Revision 2.4 12 June 2001 Revised by: esr

Where to find more.

Revision 2.3 22 May 2001 Revised by: esr

Introduction to bus types. Polish translation link.

Revision 2.2 5 February 2001 Revised by: esr

New section on how DNS is organized. Corrected for new location of document. Various copy−edit fixes.

Revision 2.1 29 November 2000 Revised by: esr

Correct explanation of twos−complement numbers. Various copy−edit fixes.

Revision 2.0 5 August 2000 Revised by: esr

First DocBook version. Detailed description of memory hierarchy.

Revision 1.7 6 March 2000 Revised by: esr

Correct and expanded the section on file permissions.

Revision 1.4 25 September 1999 Revised by: esr

Be more precise about what kernel does vs. what init does.

Revision 1.3 27 June 1999 Revised by: esr

The sections `What happens when you log in?' and `File ownership, permissions and security'.

Revision 1.2 26 December 1998 Revised by: esr

The section `How does my computer store things in memory?'.

Revision 1.0 29 October 1998 Revised by: esr

Initial revision.

This document describes the working basics of PC−class computers, Unix−like operating systems, and the
Internet in non−technical language.

Table of Contents
1. Introduction...1

1.1. Purpose of this document..1
1.2. New versions of this document...1
1.3. Feedback and corrections..1
1.4. Related resources..1

2. Basic anatomy of your computer...3

3. What happens when you switch on a computer?...4

4. What happens when you log in?..6

5. What happens when you run programs from the shell?...7

6. How do input devices and interrupts work?..8

7. How does my computer do several things at once?...9

8. How does my computer keep processes from stepping on each other?...10
8.1. Virtual memory: the simple version...10
8.2. Virtual memory: the detailed version...10
8.3. The Memory Management Unit..12

9. How does my computer store things in memory?..13
9.1. Numbers..13
9.2. Characters...14

10. How does my computer store things on disk?..15
10.1. Low−level disk and file system structure...15
10.2. File names and directories..15
10.3. Mount points...16
10.4. How a file gets looked up...16
10.5. File ownership, permissions and security...16
10.6. How things can go wrong...19

11. How do computer languages work?..20
11.1. Compiled languages..20
11.2. Interpreted languages..20
11.3. P−code languages...21

12. How does the Internet work?...22
12.1. Names and locations...22
12.2. The Domain Name System...22
12.3. Packets and routers...23
12.4. TCP and IP..24
12.5. HTTP, an application protocol..24

13. To Learn More..26

The Unix and Internet Fundamentals HOWTO

i

1. Introduction

1.1. Purpose of this document

This document is intended to help Linux and Internet users who are learning by doing. While this is a great
way to acquire specific skills, sometimes it leaves peculiar gaps in one's knowledge of the basics −− gaps
which can make it hard to think creatively or troubleshoot effectively, from lack of a good mental model of
what is really going on.

I'll try to describe in clear, simple language how it all works. The presentation will be tuned for people using
Unix or Linux on PC−class hardware. Nevertheless, I'll usually refer simply to `Unix' here, as most of what I
will describe is constant across platforms and across Unix variants.

I'm going to assume you're using an Intel PC. The details differ slightly if you're running an Alpha or
PowerPC or some other Unix box, but the basic concepts are the same.

I won't repeat things, so you'll have to pay attention, but that also means you'll learn from every word you
read. It's a good idea to just skim when you first read this; you should come back and reread it a few times
after you've digested what you have learned.

This is an evolving document. I intend to keep adding sections in response to user feedback, so you should
come back and review it periodically.

1.2. New versions of this document

New versions of the Unix and Internet Fundamentals HOWTO will be periodically posted to
comp.os.linux.help and news:comp.os.linux.announce and news.answers. They will also be uploaded to
various Linux WWW and FTP sites, including the LDP home page.

You can view the latest version of this on the World Wide Web via the URL
http://www.linuxdoc.org/HOWTO/Unix−and−Internet−Fundamentals−HOWTO/index.html.

This document has been translated into Polish.

1.3. Feedback and corrections

If you have questions or comments about this document, please feel free to mail Eric S. Raymond, at
esr@thyrsus.com. I welcome any suggestions or criticisms. I especially welcome hyperlinks to more detailed
explanations of individual concepts. If you find a mistake with this document, please let me know so I can
correct it in the next version. Thanks.

1.4. Related resources

If you're reading this in order to learn how to hack, you should also read the How To Become A Hacker

1. Introduction 1

news:comp.os.linux.help
news:comp.os.linux.announce
news:news.answers
http://www.linuxdoc.org/HOWTO/Unix-and-Internet-Fundamentals-HOWTO/index.html
esr1iso2.htm
mailto:esr@thyrsus.com
http://www.tuxedo.org/~esr/faqs/hacker-howto.html

FAQ. It has links to some other useful resources.

The Unix and Internet Fundamentals HOWTO

1. Introduction 2

http://www.tuxedo.org/~esr/faqs/hacker-howto.html

2. Basic anatomy of your computer
Your computer has a processor chip inside it that does the actual computing. It has internal memory (what
DOS/Windows people call ``RAM'' and Unix people often call ``core''; the Unix term is a folk memory from
when RAM consisted of ferrite−core donuts). The processor and memory live on the motherboard, which is
the heart of your computer.

Your computer has a screen and keyboard. It has hard drives and floppy disks. The screen and your disks
have controller cards that plug into the motherboard and help the computer drive these devices. (Your
keyboard is too simple to need a separate card; the controller is built into the keyboard chassis itself.)

We'll go into some of the details of how these devices work later. For now, here are a few basic things to
keep in mind about how they work together:

All the parts of your computer inside the case are connected by a bus. Physically, the bus is what you plug
your controller cards into (the video card, the disk controller, a sound card if you have one). The bus is the
data highway between your processor, your screen, your disk, and everything else.

(If you've seen references to `ISA', `PCI', and `PCMCIA' in connection with PCs and have not understood
them, these are bus types. ISA is, except in minor details, the same bus that was used on IBM's original PCs
in 1980; it is passing out of use now. PCI, for Peripheral Component Interconnection, is the bus used on most
modern PCs, and on modern Macintoshes as well. PCMCIA is a variant of ISA with smaller physical
connectors used on laptop computers.)

The processor, which makes everything else go, can't actually see any of the other pieces directly; it has to
talk to them over the bus. The only other subsystem that it has really fast, immediate access to is memory (the
core). In order for programs to run, then, they have to be in core (in memory).

When your computer reads a program or data off the disk, what actually happens is that the processor uses
the bus to send a disk read request to your disk controller. Some time later the disk controller uses the bus to
signal the processor that it has read the data and put it in a certain location in memory. The processor can then
use the bus to look at that data.

Your keyboard and screen also communicate with the processor via the bus, but in simpler ways. We'll
discuss those later on. For now, you know enough to understand what happens when you turn on your
computer.

2. Basic anatomy of your computer 3

3. What happens when you switch on a computer?
A computer without a program running is just an inert hunk of electronics. The first thing a computer has to
do when it is turned on is start up a special program called an operating system. The operating system's job is
to help other computer programs to work by handling the messy details of controlling the computer's
hardware.

The process of bringing up the operating system is called booting (originally this was bootstrapping and
alluded to the process of pulling yourself up ``by your bootstraps''). Your computer knows how to boot
because instructions for booting are built into one of its chips, the BIOS (or Basic Input/Output System) chip.

The BIOS chip tells it to look in a fixed place, usually on the lowest−numbered hard disk (the boot disk) for a
special program called a boot loader (under Linux the boot loader is called LILO). The boot loader is pulled
into memory and started. The boot loader's job is to start the real operating system.

The loader does this by looking for a kernel, loading it into memory, and starting it. When you boot Linux
and see "LILO" on the screen followed by a bunch of dots, it is loading the kernel. (Each dot means it has
loaded another disk block of kernel code.)

(You may wonder why the BIOS doesn't load the kernel directly −− why the two−step process with the boot
loader? Well, the BIOS isn't very smart. In fact it's very stupid, and Linux doesn't use it at all after boot time.
It was originally written for primitive 8−bit PCs with tiny disks, and literally can't access enough of the disk
to load the kernel directly. The boot loader step also lets you start one of several operating systems off
different places on your disk, in the unlikely event that Unix isn't good enough for you.)

Once the kernel starts, it has to look around, find the rest of the hardware, and get ready to run programs. It
does this by poking not at ordinary memory locations but rather at I/O ports −− special bus addresses that are
likely to have device controller cards listening at them for commands. The kernel doesn't poke at random; it
has a lot of built−in knowledge about what it's likely to find where, and how controllers will respond if
they're present. This process is called autoprobing.

Most of the messages you see at boot time are the kernel autoprobing your hardware through the I/O ports,
figuring out what it has available to it and adapting itself to your machine. The Linux kernel is extremely
good at this, better than most other Unixes and much better than DOS or Windows. In fact, many Linux
old−timers think the cleverness of Linux's boot−time probes (which made it relatively easy to install) was a
major reason it broke out of the pack of free−Unix experiments to attract a critical mass of users.

But getting the kernel fully loaded and running isn't the end of the boot process; it's just the first stage
(sometimes called run level 1). After this first stage, the kernel hands control to a special process called `init'
which spawns several housekeeping processes.

The init process's first job is usually to check to make sure your disks are OK. Disk file systems are fragile
things; if they've been damaged by a hardware failure or a sudden power outage, there are good reasons to
take recovery steps before your Unix is all the way up. We'll go into some of this later on when we talk about
how file systems can go wrong.

Init's next step is to start several daemons. A daemon is a program like a print spooler, a mail listener or a
WWW server that lurks in the background, waiting for things to do. These special programs often have to
coordinate several requests that could conflict. They are daemons because it's often easier to write one
program that runs constantly and knows about all requests than it would be to try to make sure that a flock of

3. What happens when you switch on a computer? 4

copies (each processing one request and all running at the same time) don't step on each other. The particular
collection of daemons your system starts may vary, but will almost always include a print spooler (a
gatekeeper daemon for your printer).

The next step is to prepare for users. Init starts a copy of a program called getty to watch your console (and
maybe more copies to watch dial−in serial ports). This program is what issues the login prompt to your
console. Once all daemons and getty processes for each terminal are started, we're at run level 2. At this level,
you can log in and run programs.

But we're not done yet. The next step is to start up various daemons that support networking and other
services. Once that's done, we're at run level 3 and the system is fully ready for use.

The Unix and Internet Fundamentals HOWTO

3. What happens when you switch on a computer? 5

4. What happens when you log in?
When you log in (give a name to getty) you identify yourself to the computer. It then runs a program called
(naturally enough) login, which takes your password and checks to see if you are authorized to be using the
machine. If you aren't, your login attempt will be rejected. If you are, login does a few housekeeping things
and then starts up a command interpreter, the shell. (Yes, getty and login could be one program. They're
separate for historical reasons not worth going into here.)

Here's a bit more about what the system does before giving you a shell (you'll need to know this later when
we talk about file permissions). You identify yourself with a login name and password. That login name is
looked up in a file called /etc/passwd, which is a sequence of lines each describing a user account.

One of these fields is an encrypted version of the account password (sometimes the encrypted fields are
actually kept in a second /etc/shadow file with tighter permissions; this makes password cracking harder).
What you enter as an account password is encrypted in exactly the same way, and the login program checks
to see if they match. The security of this method depends on the fact that, while it's easy to go from your clear
password to the encrypted version, the reverse is very hard. Thus, even if someone can see the encrypted
version of your password, they can't use your account. (It also means that if you forget your password, there's
no way to recover it, only to change it to something else you choose.)

Once you have successfully logged in, you get all the privileges associated with the individual account you
are using. You may also be recognized as part of a group. A group is a named collection of users set up by
the system administrator. Groups can have privileges independently of their members' privileges. A user can
be a member of multiple groups. (For details about how Unix privileges work, see the section below on
permissions.)

(Note that although you will normally refer to users and groups by name, they are actually stored internally as
numeric IDs. The password file maps your account name to a user ID; the /etc/group file maps group
names to numeric group IDs. Commands that deal with accounts and groups do the translation automatically.)

Your account entry also contains your home directory, the place in the Unix file system where your personal
files will live. Finally, your account entry also sets your shell, the command interpreter that login will start up
to accept your commmands.

4. What happens when you log in? 6

5. What happens when you run programs from the
shell?
The shell is Unix's interpreter for the commands you type in; it's called a shell because it wraps around and
hides the operating system kernel. It's an important feature of Unix that the shell and kernel are separate
programs communicating through a small set of system calls. This makes it possible for there to be multiple
shells, suiting different tastes in interfaces.

The normal shell gives you the '$' prompt that you see after logging in (unless you've customized it to be
something else). We won't talk about shell syntax and the easy things you can see on the screen here; instead
we'll take a look behind the scenes at what's happening from the computer's point of view.

After boot time and before you run a program, you can think of your computer as containing a zoo of
processes that are all waiting for something to do. They're all waiting on events. An event can be you pressing
a key or moving a mouse. Or, if your machine is hooked to a network, an event can be a data packet coming
in over that network.

The kernel is one of these processes. It's a special one, because it controls when the other user processes can
run, and it is normally the only process with direct access to the machine's hardware. In fact, user processes
have to make requests to the kernel when they want to get keyboard input, write to your screen, read from or
write to disk, or do just about anything other than crunching bits in memory. These requests are known as
system calls.

Normally all I/O goes through the kernel so it can schedule the operations and prevent processes from
stepping on each other. A few special user processes are allowed to slide around the kernel, usually by being
given direct access to I/O ports. X servers (the programs that handle other programs' requests to do screen
graphics on most Unix boxes) are the most common example of this. But we haven't gotten to an X server
yet; you're looking at a shell prompt on a character console.

The shell is just a user process, and not a particularly special one. It waits on your keystrokes, listening
(through the kernel) to the keyboard I/O port. As the kernel sees them, it echoes them to your screen. When
the kernel sees an `Enter' it passes your line of text to the shell. The shell tries to interpret those keystrokes as
commands.

Let's say you type `ls' and Enter to invoke the Unix directory lister. The shell applies its built−in rules to
figure out that you want to run the executable command in the file `/bin/ls'. It makes a system call asking the
kernel to start /bin/ls as a new child process and give it access to the screen and keyboard through the kernel.
Then the shell goes to sleep, waiting for ls to finish.

When /bin/ls is done, it tells the kernel it's finished by issuing an exit system call. The kernel then wakes up
the shell and tells it it can continue running. The shell issues another prompt and waits for another line of
input.

Other things may be going on while your `ls' is executing, however (we'll have to suppose that you're listing a
very long directory). You might switch to another virtual console, log in there, and start a game of Quake, for
example. Or, suppose you're hooked up to the Internet. Your machine might be sending or receiving mail
while /bin/ls runs.

5. What happens when you run programs from the shell? 7

6. How do input devices and interrupts work?
Your keyboard is a very simple input device; simple because it generates small amounts of data very slowly
(by a computer's standards). When you press or release a key, that event is signalled up the keyboard cable to
raise a hardware interrupt.

It's the operating system's job to watch for such interrupts. For each possible kind of interrupt, there will be
an interrupt handler, a part of the operating system that stashes away any data associated with them (like
your keypress/keyrelease value) until it can be processed.

What the interrupt handler for your keyboard actually does is post the key value into a system area near the
bottom of memory. There, it will be available for inspection when the operating system passes control to
whichever program is currently supposed to be reading from the keyboard.

More complex input devices like disk or network cards work in a similar way. Earlier, I referred to a disk
controller using the bus to signal that a disk request has been fulfilled. What actually happens is that the disk
raises an interrupt. The disk interrupt handler then copies the retrieved data into memory, for later use by the
program that made the request.

Every kind of interrupt has an associated priority level. Lower−priority interrupts (like keyboard events) have
to wait on higher−priority interrupts (like clock ticks or disk events). Unix is designed to give high priority to
the kinds of events that need to be processed rapidly in order to keep the machine's response smooth.

In your operating system's boot−time messages, you may see references to IRQ numbers. You may be aware
that one of the common ways to misconfigure hardware is to have two different devices try to use the same
IRQ, without understanding exactly why.

Here's the answer. IRQ is short for "Interrupt Request". The operating system needs to know at startup time
which numbered interrupts each hardware device will use, so it can associate the proper handlers with each
one. If two different devices try use the same IRQ, interrupts will sometimes get dispatched to the wrong
handler. This will usually at least lock up the device, and can sometimes confuse the OS badly enough that it
will flake out or crash.

6. How do input devices and interrupts work? 8

7. How does my computer do several things at
once?
It doesn't, actually. Computers can only do one task (or process) at a time. But a computer can change tasks
very rapidly, and fool slow human beings into thinking it's doing several things at once. This is called
timesharing.

One of the kernel's jobs is to manage timesharing. It has a part called the scheduler which keeps information
inside itself about all the other (non−kernel) processes in your zoo. Every 1/60th of a second, a timer goes off
in the kernel, generating a clock interrupt. The scheduler stops whatever process is currently running,
suspends it in place, and hands control to another process.

1/60th of a second may not sound like a lot of time. But on today's microprocessors it's enough to run tens of
thousands of machine instructions, which can do a great deal of work. So even if you have many processes,
each one can accomplish quite a bit in each of its timeslices.

In practice, a program may not get its entire timeslice. If an interrupt comes in from an I/O device, the kernel
effectively stops the current task, runs the interrupt handler, and then returns to the current task. A storm of
high−priority interrupts can squeeze out normal processing; this misbehavior is called thrashing and is
fortunately very hard to induce under modern Unixes.

In fact, the speed of programs is only very seldom limited by the amount of machine time they can get (there
are a few exceptions to this rule, such as sound or 3−D graphics generation). Much more often, delays are
caused when the program has to wait on data from a disk drive or network connection.

An operating system that can routinely support many simultaneous processes is called "multitasking". The
Unix family of operating systems was designed from the ground up for multitasking and is very good at it −−
much more effective than Windows or the Mac OS, which have had multitasking bolted into it as an
afterthought and do it rather poorly. Efficient, reliable multitasking is a large part of what makes Linux
superior for networking, communications, and Web service.

7. How does my computer do several things at once? 9

8. How does my computer keep processes from
stepping on each other?
The kernel's scheduler takes care of dividing processes in time. Your operating system also has to divide
them in space, so that processes can't step on each others' working memory. Even if you assume that all
programs are trying to be cooperative, you don't want a bug in one of them to be able to corrupt others. The
things your operating system does to solve this problem are called memory management.

Each process in your zoo needs its own area of memory, as a place to run its code from and keep variables
and results in. You can think of this set as consisting of a read−only code segment (containing the process's
instructions) and a writeable data segment (containing all the process's variable storage). The data segment is
truly unique to each process, but if two processes are running the same code Unix automatically arranges for
them to share a single code segment as an efficiency measure.

8.1. Virtual memory: the simple version

Efficiency is important, because memory is expensive. Sometimes you don't have enough to hold the entirety
of all the programs the machine is running, especially if you are using a large program like an X server. To
get around this, Unix uses a technique called virtual memory. It doesn't try to hold all the code and data for a
process in memory. Instead, it keeps around only a relatively small working set; the rest of the process's state
is left in a special swap space area on your hard disk.

Note that in the past, that "Sometimes" last paragraph ago was "Almost always," −− the size of memory was
typically small relative to the size of running programs, so swapping was frequent. Memory is far less
expensive nowadays and even low−end machines have quite a lot of it. On modern single−user machines
with 64MB of memory and up, it's possible to run X and a typical mix of jobs without ever swapping after
they're initially loded into core.

8.2. Virtual memory: the detailed version

Actually, the last section oversimplified things a bit. Yes, programs see most of your memory as one big flat
bank of addresses bigger than physical memory, and disk swapping is used to maintain that illusion. But your
hardware actually has no fewer than five different kinds of memory in it, and the differences between them
can matter a good deal when programs have to be tuned for maximum speed. To really understand what goes
on in your machine, you should learn how all of them work.

The five kinds of memory are these: processor registers, internal (or on−chip) cache, external (or off−chip)
cache, main memory, and disk. And the reason there are so many kinds is simple: speed costs money. I have
listed these kinds of memory in decreasing order of access time and increasing order of cost. Register
memory is the fastest and most expensive and can be random−accessed about a billion times a second, while
disk is the slowest and cheapest and can do about 100 random accesses a second.

Here's a full list reflecting early−2000 speeds for a typical desktop machine. While speed and capacity will go
up and prices will drop, you can expect these ratios to remain fairly constant −− and it's those ratios that
shape the memory hierarchy.

8. How does my computer keep processes from stepping on each other? 10

Disk

Size: 13000MB Accesses: 100KB/sec

Main memory

Size: 256MB Accesses: 100M/sec

External cache

Size: 512KB Accesses: 250M/sec

Internal Cache

Size: 32KB Accesses: 500M/sec

Processor

Size: 28 bytes Accesses: 1000M/sec

We can't build everything out of the fastest kinds of memory. It would be way too expensive −− and even if it
weren't, fast memory is volatile. That is, it loses its marbles when the power goes off. Thus, computers have
to have hard disks or other kinds of non−volatile storage that retains data when the power goes off. And
there's a huge mismatch between the speed of processors and the speed of disks. The middle three levels of
the memory hierarchy (internal cache, external cache, and main memory) basically exist to bridge that gap.

Linux and other Unixes have a feature called virtual memory. What this means is that the operating system
behaves as though it has much more main memory than it actually does. Your actual physical main memory
behaves like a set of windows or caches on a much larger "virtual" memory space, most of which at any
given time is actually stored on disk in a special zone called the swap area. Out of sight of user programs, the
OS is moving blocks of data (called "pages") between memory and disk to maintain this illusion. The end
result is that your virtual memory is much larger but not too much slower than real memory.

How much slower virtual memory is than physical depends on how well the operating system's swapping
algorithms match the way your programs use virtual memory. Fortunately, memory reads and writes that are
close together in time also tend to cluster in memory space. This tendency is called locality, or more formally
locality of reference −− and it's a good thing. If memory references jumped around virtual space at random,
you'd typically have to do a disk read and write for each new reference and virtual memory would be as slow
as a disk. But because programs do actually exhibit strong locality, your operating system can do relatively
few swaps per reference.

It's been found by experience that the most effective method for a broad class of memory−usage patterns is
very simple; it's called LRU or the "least recently used" algorithm. The virtual−memory system grabs disk
blocks into its working set as it needs them. When it runs out of physical memory for the working set, it
dumps the least−recently−used block. All Unixes, and most other virtual−memory operating systems, use
minor variations on LRU.

Virtual memory is the first link in the bridge between disk and processor speeds. It's explicitly managed by
the OS. But there is still a major gap between the speed of physical main memory and the speed at which a
processor can access its register memory. The external and internal caches address this, using a technique
similar to virtual memory as I've described it.

The Unix and Internet Fundamentals HOWTO

8. How does my computer keep processes from stepping on each other? 11

Just as the physical main memory behaves like a set of windows or caches on the disk's swap area, the
external cache acts as windows on main memory. External cache is faster (250M accesses per sec, rather than
100M) and smaller. The hardware (specifically, your computer's memory controller) does the LRU thing in
the external cache on blocks of data fetched from the main memory. For historical reasons, the unit of cache
swapping is called a "line" rather than a page.

But we're not done. The internal cache gives us the final step−up in effective speed by caching portions of the
external cache. It is faster and smaller yet −− in fact, it lives right on the processor chip.

If you want to make your programs really fast, it's useful to know these details. Your programs get faster
when they have stronger locality, because that makes the caching work better. The easiest way to make
programs fast is therefore to make them small. If a program isn't slowed down by lots of disk I/O or waits on
network events, it will usually run at the speed of the largest cache that it will fit inside.

If you can't make your whole program small, some effort to tune the speed−critical portions so they have
stronger locality can pay off. Details on techniques for doing such tuning are beyond the scope of this
tutorial; by the time you need them, you'll be intimate enough with some compiler to figure out many of them
yourself.

8.3. The Memory Management Unit

Even when you have enough physical core to avoid swapping, the part of the operating system called the
memory manager still has important work to do. It has to make sure that programs can only alter their own
data segments −− that is, prevent erroneous or malicious code in one program from garbaging the data in
another. To do this, it keeps a table of data and code segments. The table is updated whenever a process either
requests more memory or releases memory (the latter usually when it exits).

This table is used to pass commands to a specialized part of the underlying hardware called an MMU or
memory management unit. Modern processor chips have MMUs built right onto them. The MMU has the
special ability to put fences around areas of memory, so an out−of−bound reference will be refused and cause
a special interrupt to be raised.

If you ever see a Unix message that says "Segmentation fault", "core dumped" or something similar, this is
exactly what has happened; an attempt by the running program to access memory (core) outside its segment
has raised a fatal interrupt. This indicates a bug in the program code; the core dump it leaves behind is
diagnostic information intended to help a programmer track it down.

There is another aspect to protecting processes from each other besides segregating the memory they access.
You also want to be able to control their file accesses so a buggy or malicious program can't corrupt critical
pieces of the system. This is why Unix has file permissions which we'll discuss later.

The Unix and Internet Fundamentals HOWTO

8.3. The Memory Management Unit 12

9. How does my computer store things in memory?
You probably know that everything on a computer is stored as strings of bits (binary digits; you can think of
them as lots of little on−off switches). Here we'll explain how those bits are used to represent the letters and
numbers that your computer is crunching.

Before we can go into this, you need to understand about the word size of your computer. The word size is
the computer's preferred size for moving units of information around; technically it's the width of your
processor's registers, which are the holding areas your processor uses to do arithmetic and logical
calculations. When people write about computers having bit sizes (calling them, say, ``32−bit'' or ``64−bit''
computers), this is what they mean.

Most computers (including 386, 486, and Pentium PCs) have a word size of 32 bits. The old 286 machines
had a word size of 16. Old−style mainframes often had 36−bit words. A few processors (like the Alpha from
what used to be DEC and is now Compaq) have 64−bit words. The 64−bit word will become more common
over the next five years; Intel is planning to replace the Pentium series with a 64−bit chip called the `Itanium'.

The computer views your memory as a sequence of words numbered from zero up to some large value
dependent on your memory size. That value is limited by your word size, which is why programs on older
machines like 286s had to go through painful contortions to address large amounts of memory. I won't
describe them here; they still give older programmers nightmares.

9.1. Numbers

Integer numbers are represented as either words or pairs of words, depending on your processor's word size.
One 32−bit machine word is the most common integer representation.

Integer arithmetic is close to but not actually mathematical base−two. The low−order bit is 1, next 2, then 4
and so forth as in pure binary. But signed numbers are represented in twos−complement notation. The
highest−order bit is a sign bit which makes the quantity negative, and every negative number can be obtained
from the corresponding positive value by inverting all the bits and adding one. This is why integers on a
32−bit machine have the range −2^31 to 2^31 − 1 1 (where ^ is the `power' operation, 2^3 = 8). That 32nd bit
is being used for sign.

Some computer languages give you access to unsigned arithmetic which is straight base 2 with zero and
positive numbers only.

Most processors and some languages can do operations in floating−point numbers (this capability is built into
all recent processor chips). Floating−point numbers give you a much wider range of values than integers and
let you express fractions. The ways in which this is done vary and are rather too complicated to discuss in
detail here, but the general idea is much like so−called `scientific notation', where one might write (say) 1.234
* 10^23; the encoding of the number is split into a mantissa (1.234) and the exponent part (23) for the
power−of−ten multiplier (which means the number multiplied out would have 20 zeros on it, 23 minus the
three decimal places).

9. How does my computer store things in memory? 13

9.2. Characters

Characters are normally represented as strings of seven bits each in an encoding called ASCII (American
Standard Code for Information Interchange). On modern machines, each of the 128 ASCII characters is the
low seven bits of an octet or 8−bit byte; octets are packed into memory words so that (for example) a
six−character string only takes up two memory words. For an ASCII code chart, type `man 7 ascii' at your
Unix prompt.

The preceding paragraph was misleading in two ways. The minor one is that the term `octet' is formally
correct but seldom actually used; most people refer to an octet as byte and expect bytes to be eight bits long.
Strictly speaking, the term `byte' is more general; there used to be, for example, 36−bit machines with 9−bit
bytes (though there probably never will be again).

The major one is that not all the world uses ASCII. In fact, much of the world can't −− ASCII, while fine for
American English, lacks many accented and other special characters needed by users of other languages.
Even British English has trouble with the lack of a pound−currency sign.

There have been several attempts to fix this problem. All use the extra high bit that ASCII doesn't, making it
the low half of a 256−character set. The most widely−used of these is the so−called `Latin−1' character set
(more formally called ISO 8859−1). This is the default character set for Linux, HTML, and X. Microsoft
Windows uses a mutant version of Latin−1 that adds a bunch of characters such as right and left double
quotes in places proper Latin−1 leaves unassigned for historical reasons (for a scathing account of the trouble
this causes, see the demoroniser page).

Latin−1 handles western European languages, including English, French, German, Spanish, Italian, Dutch,
Norwegian, Swedish, Danish. However, this isn't good enough either, and as a result there is a whole series of
Latin−2 through −9 character sets to handle things like Greek, Arabic, Hebrew, Esperanto, and
Serbo−Croatian. For details, see the ISO alphabet soup page.

The ultimate solution is a huge standard called Unicode (and its identical twin ISO/IEC 10646−1:1993).
Unicode is identical to Latin−1 in its lowest 256 slots. Above these in 16−bit space it includes Greek,
Cyrillic, Armenian, Hebrew, Arabic, Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu,
Kannada, Malayalam, Thai, Lao, Georgian, Tibetan, Japanese Kana, the complete set of modern Korean
Hangul, and a unified set of Chinese/Japanese/Korean (CJK) ideographs. For details, see the Unicode Home
Page.

The Unix and Internet Fundamentals HOWTO

9.2. Characters 14

http://www.fourmilab.ch/webtools/demoroniser/
http://www.utia.cas.cz/user_data/vs/documents/ISO-8859-X-charsets.html
http://www.unicode.org/
http://www.unicode.org/

10. How does my computer store things on disk?
When you look at a hard disk under Unix, you see a tree of named directories and files. Normally you won't
need to look any deeper than that, but it does become useful to know what's going on underneath if you have
a disk crash and need to try to salvage files. Unfortunately, there's no good way to describe disk organization
from the file level downwards, so I'll have to describe it from the hardware up.

10.1. Low−level disk and file system structure

The surface area of your disk, where it stores data, is divided up something like a dartboard −− into circular
tracks which are then pie−sliced into sectors. Because tracks near the outer edge have more area than those
close to the spindle at the center of the disk, the outer tracks have more sector slices in them than the inner
ones. Each sector (or disk block) has the same size, which under modern Unixes is generally 1 binary K (1024
8−bit words). Each disk block has a unique address or disk block number.

Unix divides the disk into disk partitions. Each partition is a continuous span of blocks that's used separately
from any other partition, either as a file system or as swap space. The original reasons for partitions had to do
with crash recovery in a world of much slower and more error−prone disks; the boundaries between them
reduce the fraction of your disk likely to become inaccessible or corrupted by a random bad spot on the disk.
Nowadays, it's more important that partitions can be declared read−only (preventing an intruder from
modifying critical system files) or shared over a network through various means we won't discuss here. The
lowest−numbered partition on a disk is often treated specially, as a boot partition where you can put a kernel
to be booted.

Each partition is either swap space (used to implement virtual memory) or a file system used to hold files.
Swap−space partitions are just treated as a linear sequence of blocks. File systems, on the other hand, need a
way to map file names to sequences of disk blocks. Because files grow, shrink, and change over time, a file's
data blocks will not be a linear sequence but may be scattered all over its partition (from wherever the
operating system can find a free block when it needs one). This scattering effect is called fragmentation.

10.2. File names and directories

Within each file system, the mapping from names to blocks is handled through a structure called an i−node.
There's a pool of these things near the ``bottom'' (lowest−numbered blocks) of each file system (the very
lowest ones are used for housekeeping and labeling purposes we won't describe here). Each i−node describes
one file. File data blocks (including directories) live above the i−nodes (in higher−numbered blocks).

Every i−node contains a list of the disk block numbers in the file it describes. (Actually this is a half−truth,
only correct for small files, but the rest of the details aren't important here.) Note that the i−node does
not contain the name of the file.

Names of files live in directory structures. A directory structure just maps names to i−node numbers. This is
why, in Unix, a file can have multiple true names (or hard links); they're just multiple directory entries that
happen to point to the same i−node.

10. How does my computer store things on disk? 15

10.3. Mount points

In the simplest case, your entire Unix file system lives in just one disk partition. While you'll see this
arrangement on some small personal Unix systems, it's unusual. More typical is for it to be spread across
several disk partitions, possibly on different physical disks. So, for example, your system may have one small
partition where the kernel lives, a slightly larger one where OS utilities live, and a much bigger one where
user home directories live.

The only partition you'll have access to immediately after system boot is your root partition, which is (almost
always) the one you booted from. It holds the root directory of the file system, the top node from which
everything else hangs.

The other partitions in the system have to be attached to this root in order for your entire, multiple−partition
file system to be accessible. About midway through the boot process, your Unix will make these non−root
partitions accessible. It will mount each one onto a directory on the root partition.

For example, if you have a Unix directory called `/usr', it is probably a mount point to a partition that contains
many programs installed with your Unix but not required during initial boot.

10.4. How a file gets looked up

Now we can look at the file system from the top down. When you open a file (such as, say,
/home/esr/WWW/ldp/fundamentals.sgml) here is what happens:

Your kernel starts at the root of your Unix file system (in the root partition). It looks for a directory there
called `home'. Usually `home' is a mount point to a large user partition elsewhere, so it will go there. In the
top−level directory structure of that user partition, it will look for a entry called `esr' and extract an i−node
number. It will go to that i−node, notice that its associated file data blocks are a directory structure, and look
up `WWW'. Extracting that i−node, it will go to the corresponding subdirectory and look up `ldp'. That will
take it to yet another directory i−node. Opening that one, it will find an i−node number for
`fundamentals.sgml'. That i−node is not a directory, but instead holds the list of disk blocks associated with
the file.

10.5. File ownership, permissions and security

To keep programs from accidentally or maliciously stepping on data they shouldn't, Unix has
permission features. These were originally designed to support timesharing by protecting multiple users on
the same machine from each other, back in the days when Unix ran mainly on expensive shared
minicomputers.

In order to understand file permissions, you need to recall the description of users and groups in the section
What happens when you log in?. Each file has an owning user and an owning group. These are initially those
of the file's creator; they can be changed with the programs chown(1) and chgrp(1).

The basic permissions that can be associated with a file are `read' (permission to read data from it), `write'
(permission to modify it) and `execute' (permission to run it as a program). Each file has three sets of
permissions; one for its owning user, one for any user in its owning group, and one for everyone else. The

The Unix and Internet Fundamentals HOWTO

10.3. Mount points 16

`privileges' you get when you log in are just the ability to do read, write, and execute on those files for which
the permission bits match your user ID or one of the groups you are in, or files that have been made
accessible to the world.

To see how these may interact and how Unix displays them, let's look at some file listings on a hypothetical
Unix system. Here's one:

snark:~$ ls −l notes
−rw−r−−r−− 1 esr users 2993 Jun 17 11:00 notes

This is an ordinary data file. The listing tells us that it's owned by the user `esr' and was created with the
owning group `users'. Probably the machine we're on puts every ordinary user in this group by default; other
groups you commonly see on timesharing machines are `staff', `admin', or `wheel' (for obvious reasons,
groups are not very important on single−user workstations or PCs). Your Unix may use a different default
group, perhaps one named after your user ID.

The string `−rw−r−−r−−' represents the permission bits for the file. The very first dash is the position for the
directory bit; it would show `d' if the file were a directory. After that, the first three places are user
permissions, the second three group permissions, and the third are permissions for others (often called `world'
permissions). On this file, the owning user `esr' may read or write the file, other people in the `users' group
may read it, and everybody else in the world may read it. This is a pretty typical set of permissions for an
ordinary data file.

Now let's look at a file with very different permissions. This file is GCC, the GNU C compiler.

snark:~$ ls −l /usr/bin/gcc
−rwxr−xr−x 3 root bin 64796 Mar 21 16:41 /usr/bin/gcc

This file belongs to a user called `root' and a group called `bin'; it can be written (modified) only by root, but
read or executed by anyone. This is a typical ownership and set of permissions for a pre−installed system
command. The `bin' group exists on some Unixes to group together system commands (the name is a
historical relic, short for `binary'). Your Unix might use a `root' group instead (not quite the same as the `root'
user!).

The `root' user is the conventional name for numeric user ID 0, a special, privileged account that can override
all privileges. Root access is useful but dangerous; a typing mistake while you're logged in as root can
clobber critical system files that the same command executed from an ordinary user account could not touch.

Because the root account is so powerful, access to it should be guarded very carefully. Your root password is
the single most critical piece of security information on your system, and it is what any crackers and intruders
who ever come after you will be trying to get.

About passwords: Don't write them down −− and don't pick a passwords that can easily be guessed, like the
first name of your girlfriend/boyfriend/spouse. This is an astonishingly common bad practice that helps
crackers no end. In general, don't pick any word in the dictionary; there are programs called dictionary
crackers that look for likely passwords by running through word lists of common choices. A good technique
is to pick a combination consisting of a word, a digit, and another word, such as `shark6cider' or `jump3joy';
that will make the search space too large for a dictionary cracker. Don't use these examples, though −−
crackers might expect that after reading this document and put them in their dictionaries.

Now let's look at a third case:

The Unix and Internet Fundamentals HOWTO

10.3. Mount points 17

snark:~$ ls −ld ~
drwxr−xr−x 89 esr users 9216 Jun 27 11:29 /home2/esr
snark:~$

This file is a directory (note the `d' in the first permissions slot). We see that it can be written only by esr, but
read and executed by anybody else.

Read permission gives you the ability to list the directory −− that is, to see the names of files and directories
it contains. Write permission gives you the ability to create and delete files in the directory. If you remember
that the directory includes a list of the names of the files and subdirectories it contains, these rules will make
sense.

Execute permission on a directory means you can get through the directory to open the files and directories
below it. In effect, it gives you permission to access the i−nodes in the directory. A directory with execute
completely turned off would be useless.

Occasionally you'll see a directory that is world−executable but not world−readable; this means a random
user can get to files and directories beneath it, but only by knowing their exact names (the directory cannot be
listed).

It's important to remember that read, write, or execute permission on a directory is independent of the
permissions on the files and directories beneath. In particular, write access on a directory means you can
create new files or delete existing files there, but does not automatically give you write access to existing files.

Finally, let's look at the permissions of the login program itself.

snark:~$ ls −l /bin/login
−rwsr−xr−x 1 root bin 20164 Apr 17 12:57 /bin/login

This has the permissions we'd expect for a system command −− except for that 's' where the owner−execute
bit ought to be. This is the visible manifestation of a special permission called the `set−user−id' or setuid bit.

The setuid bit is normally attached to programs that need to give ordinary users the privileges of root, but in a
controlled way. When it is set on an executable program, you get the privileges of the owner of that program
file while the program is running on your behalf, whether or not they match your own.

Like the root account itself, setuid programs are useful but dangerous. Anyone who can subvert or modify a
setuid program owned by root can use it to spawn a shell with root privileges. For this reason, opening a file
to write it automatically turns off its setuid bit on most Unixes. Many attacks on Unix security try to exploit
bugs in setuid programs in order to subvert them. Security−conscious system administrators are therefore
extra−careful about these programs and reluctant to install new ones.

There are a couple of important details we glossed over when discussing permissions above; namely, how the
owning group and permissions are assigned when a file or directory is first created. The group is an issue
because users can be members of multiple groups, but one of them (specified in the user's
/etc/passwd entry) is the user's default group and will normally own files created by the user.

The story with initial permission bits is a little more complicated. A program that creates a file will normally
specify the permissions it is to start with. But these will be modified by a variable in the user's environment
called the umask. The umask specifies which permission bits to turn off when creating a file; the most
common value, and the default on most systems, is −−−−−−−w− or 002, which turns off the world−write bit.

The Unix and Internet Fundamentals HOWTO

10.3. Mount points 18

See the documentation of the umask command on your shell's manual page for details.

Initial directory group is also a bit complicated. On some Unixes a new directory gets the default group of the
creating user (this in the System V convention); on others, it gets the owning group of the parent directory in
which it's created (this is the BSD convention). On some modern Unixes, including Linux, the latter behavior
can be selected by setting the set−group−ID on the directory (chmod g+s).

10.6. How things can go wrong

Earlier it was hinted that file systems can be fragile things. Now we know that to get to a file you have to
hopscotch through what may be an arbitrarily long chain of directory and i−node references. Now suppose
your hard disk develops a bad spot?

If you're lucky, it will only trash some file data. If you're unlucky, it could corrupt a directory structure or
i−node number and leave an entire subtree of your system hanging in limbo −− or, worse, result in a
corrupted structure that points multiple ways at the same disk block or i−node. Such corruption can be spread
by normal file operations, trashing data that was not in the original bad spot.

Fortunately, this kind of contingency has become quite uncommon as disk hardware has become more
reliable. Still, it means that your Unix will want to integrity−check the file system periodically to make sure
nothing is amiss. Modern Unixes do a fast integrity check on each partition at boot time, just before mounting
it. Every few reboots they'll do a much more thorough check that takes a few minutes longer.

If all of this sounds like Unix is terribly complex and failure−prone, it may be reassuring to know that these
boot−time checks typically catch and correct normal problems before they become really disastrous. Other
operating systems don't have these facilities, which speeds up booting a bit but can leave you much more
seriously screwed when attempting to recover by hand (and that's assuming you have a copy of Norton
Utilities or whatever in the first place...).

One of the trends in current Unix designs is journalling file systems. These arrange traffic to the disk so that
it's guaranteed to be in a consistent state that can be recovered when the system comes back up. This will
speed up the boot−time integrity check a lot.

The Unix and Internet Fundamentals HOWTO

10.6. How things can go wrong 19

11. How do computer languages work?
We've already discussed how programs are run. Every program ultimately has to execute as a stream of bytes
that are instructions in your computer's machine language. But human beings don't deal with machine
language very well; doing so has become a rare, black art even among hackers.

Almost all Unix code except a small amount of direct hardware−interface support in the kernel itself is
nowadays written in a high−level language. (The `high−level' in this term is a historical relic meant to
distinguish these from `low−level' assembler languages, which are basically thin wrappers around machine
code.)

There are several different kinds of high−level languages. In order to talk about these, you'll find it useful to
bear in mind that the source code of a program (the human−created, editable version) has to go through some
kind of translation into machine code that the machine can actually run.

11.1. Compiled languages

The most conventional kind of language is a compiled language. Compiled languages get translated into
runnable files of binary machine code by a special program called (logically enough) a compiler. Once the
binary has been generated, you can run it directly without looking at the source code again. (Most software is
delivered as compiled binaries made from code you don't see.)

Compiled languages tend to give excellent performance and have the most complete access to the OS, but
also to be difficult to program in.

C, the language in which Unix itself is written, is by far the most important of these (with its variant C++).
FORTRAN is another compiled language still used among engineers and scientists but years older and much
more primitive. In the Unix world no other compiled languages are in mainstream use. Outside it, COBOL is
very widely used for financial and business software.

There used to be many other compiler languages, but most of them have either gone extinct or are strictly
research tools. If you are a new Unix developer using a compiled language, it is overwhelmingly likely to be
C or C++.

11.2. Interpreted languages

An interpreted language depends on an interpreter program that reads the source code and translates it on the
fly into computations and system calls. The source has to be re−interpreted (and the interpreter present) each
time the code is executed.

Interpreted languages tend to be slower than compiled languages, and often have limited access to the
underlying operating system and hardware. On the other hand, they tend to be easier to program and more
forgiving of coding errors than compiled languages.

Many Unix utilities, including the shell and bc(1) and sed(1) and awk(1), are effectively small interpreted
languages. BASICs are usually interpreted. So is Tcl. Historically, the most important interpretive language

11. How do computer languages work? 20

has been LISP (a major improvement over most of its successors). Today, Unix shells and the Lisp that lives
inside the Emacs editor are probably the most important pure interpreted languages.

11.3. P−code languages

Since 1990 a kind of hybrid language that uses both compilation and interpretation has become increasingly
important. P−code languages are like compiled languages in that the source is translated to a compact binary
form which is what you actually execute, but that form is not machine code. Instead it's pseudocode (or
p−code), which is usually a lot simpler but more powerful than a real machine language. When you run the
program, you interpret the p−code.

P−code can run nearly as fast as a compiled binary (p−code interpreters can be made quite simple, small and
speedy). But p−code languages can keep the flexibility and power of a good interpreter.

Important p−code languages include Python, Perl, and Java.

The Unix and Internet Fundamentals HOWTO

11.3. P−code languages 21

12. How does the Internet work?
To help you understand how the Internet works, we'll look at the things that happen when you do a typical
Internet operation −− pointing a browser at the front page of this document at its home on the Web at the
Linux Documentation Project. This document is

ttp://www.linuxdoc.org/HOWTO/Unix−and−Internet−Fundamentals−HOWTO/index.html

which means it lives in the file LDP/HOWTO/Unix−and−Internet−Fundamentals−HOWTO/index.html under
the World Wide Web export directory of the host www.linuxdoc.org.

12.1. Names and locations

The first thing your browser has to do is to establish a network connection to the machine where the
document lives. To do that, it first has to find the network location of the host www.linuxdoc.org (`host' is
short for `host machine' or `network host'; www.linuxdoc.org is a typical hostname). The corresponding
location is actually a number called an IP address (we'll explain the `IP' part of this term later).

To do this, your browser queries a program called a name server. The name server may live on your machine,
but it's more likely to run on a service machine that yours talks to. When you sign up with an ISP, part of
your setup procedure will almost certainly involve telling your Internet software the IP address of a
nameserver on the ISP's network.

The name servers on different machines talk to each other, exchanging and keeping up to date all the
information needed to resolve hostnames (map them to IP addresses). Your nameserver may query three or
four different sites across the network in the process of resolving www.linuxdoc.org, but this usually happens
very quickly (as in less than a second). We'll look at how nameservers detail in the next section.

The nameserver will tell your browser that www.linuxdoc.org's IP address is 152.19.254.81; knowing this,
your machine will be able to exchange bits with www.linuxdoc.org directly.

12.2. The Domain Name System

The whole network of programs and databases that cooperates to translate hostnames to IP addresses is called
`DNS' (Domain Name System). When you see references to a `DNS server', that means what we just called a
nameserver. Now I'll explain how the overall system works.

Internet hostnames are composed of parts separated by dots. A domain is a collection of machines that share a
common name suffix. Domains can live inside other domains. For example, the machine www.linuxdoc.org
lives in the .linuxdoc.org subdomain of the .org domain.

Each domain is defined by an authoritative name server that knows the IP addresses of the other machines in
the domain. The authoritative (or `primary') name server may have backups in case it goes down; if you see
references to a secondary name server or (`secondary DNS') it's talking about one of those. These secondaries
typically refresh their information from their primaries every few hours, so a change made to the
hostname−to−IP mapping on the primary will automatically be propagated.

12. How does the Internet work? 22

Now here's the important part. The nameservers for a domain do not have to know the locations of all the
machines in other domains (including their own subdomains); they only have to know the location of the
nameservers. In our example, the authoritative name server for the .org domain knows the IP address of the
nameserver for .linuxdoc.org, but not the address of all the other machines in linuxdoc.org.

The domains in the DNS system are arranged like a big inverted tree. At the top are the root servers.
Everybody knows the IP addresses of the root servers; they're wired into your DNS software. The root servers
know the IP addresses of the nameservers for the top−level domains like .com and .org, but not the addresses
of machines inside those domains. Each top−level domain server knows where the nameservers for the
domains directly beneath it are, and so forth.

DNS is carefully designed so that each machine can get away with the minimum amount of knowledge it
needs to have about the shape of the tree, and local changes to subtrees can be made simply by changing one
authoritative server's database of name−to−IP−address mappings.

When you query for the IP address of www.linuxdoc.org, what actually happens is this: First, your
nameserver asks a root server to tell it where it can find a nameserver for .org. Once it knows that, it then asks
the .org server to tell it the IP address of a .linuxdoc.org nameserver. Once it has that, it asks the .linuxdoc.org
nameserver to tell it the address of the host www.linuxdoc.org.

Most of the time, your nameserver doesn't actually have to work that hard. Nameservers do a lot of cacheing;
when yours resolves a hostname, it keeps the association with the resulting IP address around in memory for
a while. This is why, when you surf to a new website, you'll usually only see a message from your browser
about "Looking up" the host for the first page you fetch. Eventually the name−to−address mapping expires
and your DNS has to re−query � this is important so you don't have invalid information hanging around
forever when a hostname changes addresses. Your cached IP address for a site is also thrown out if the host is
unreachable.

12.3. Packets and routers

What the browser wants to do is send a command to the Web server on www.linuxdoc.org that looks like this:

GET /LDP/HOWTO/Fundamentals.html HTTP/1.0

Here's how that happens. The command is made into a packet, a block of bits like a telegram that is wrapped
with three important things; the source address (the IP address of your machine), the destination
address (152.19.254.81), and a service number or port number (80, in this case) that indicates that it's a
World Wide Web request.

Your machine then ships the packet down the wire (your connection to your ISP, or local network) until it
gets to a specialized machine called a router. The router has a map of the Internet in its memory −− not
always a complete one, but one that completely describes your network neighborhood and knows how to get
to the routers for other neighborhoods on the Internet.

Your packet may pass through several routers on the way to its destination. Routers are smart. They watch
how long it takes for other routers to acknowledge having received a packet. They also use that information
to direct traffic over fast links. They use it to notice when another routers (or a cable) have dropped off the
network, and compensate if possible by finding another route.

The Unix and Internet Fundamentals HOWTO

12.3. Packets and routers 23

There's an urban legend that the Internet was designed to survive nuclear war. This is not true, but the
Internet's design is extremely good at getting reliable performance out of flaky hardware in an uncertain
world. This is directly due to the fact that its intelligence is distributed through thousands of routers rather
than concentrated in a few massive and vulnerable switches (like the phone network). This means that
failures tend to be well localized and the network can route around them.

Once your packet gets to its destination machine, that machine uses the service number to feed the packet to
the web server. The web server can tell where to reply to by looking at the command packet's source IP
address. When the web server returns this document, it will be broken up into a number of packets. The size
of the packets will vary according to the transmission media in the network and the type of service.

12.4. TCP and IP

To understand how multiple−packet transmissions are handled, you need to know that the Internet actually
uses two protocols, stacked one on top of the other.

The lower level, IP (Internet Protocol), knows how to get individual packets from a source address to a
destination address (this is why these are called IP addresses). However, IP is not reliable; if a packet gets lost
or dropped, the source and destination machines may never know it. In network jargon, IP is a
connectionless protocol; the sender just fires a packet at the receiver and doesn't expect an acknowledgement.

IP is fast and cheap, though. Sometimes fast, cheap and unreliable is OK. When you play networked Doom or
Quake, each bullet is represented by an IP packet. If a few of those get lost, that's OK.

The upper level, TCP (Transmission Control Protocol), gives you reliability. When two machines negotiate a
TCP connection (which they do using IP), the receiver knows to send acknowledgements of the packets it
sees back to the sender. If the sender doesn't see an acknowledgement for a packet within some timeout
period, it resends that packet. Furthermore, the sender gives each TCP packet a sequence number, which the
receiver can use you reassemble packets in case they show up out of order. (This can easily happen if
network links go up or down during a connection.)

TCP/IP packets also contain a checksum to enable detection of data corrupted by bad links. (The checksum is
computed from the rest of the packet in such a way that if the either the rest of the packet or the checksum is
corrupted, redoing the computation and comparing is very likely to indicate an error.) So, from the point of
view of anyone using TCP/IP and nameservers, it looks like a reliable way to pass streams of bytes between
hostname/service−number pairs. People who write network protocols almost never have to think about all the
packetizing, packet reassembly, error checking, checksumming, and retransmission that goes on below that
level.

12.5. HTTP, an application protocol

Now let's get back to our example. Web browsers and servers speak an application protocol that runs on top
of TCP/IP, using it simply as a way to pass strings of bytes back and forth. This protocol is called
HTTP (Hyper−Text Transfer Protocol) and we've already seen one command in it −− the GET shown above.

When the GET command goes to www.linuxdoc.org's webserver with service number 80, it will be
dispatched to a server daemon listening on port 80. Most Internet services are implemented by server

The Unix and Internet Fundamentals HOWTO

12.4. TCP and IP 24

daemons that do nothing but wait on ports, watching for and executing incoming commands.

If the design of the Internet has one overall rule, it's that all the parts should be as simple and
human−accessible as possible. HTTP, and its relatives (like the Simple Mail Transfer Protocol, SMTP, that is
used to move electronic mail between hosts) tend to use simple printable−text commands that end with a
carriage−return/line feed.

This is marginally inefficient; in some circumstances you could get more speed by using a tightly−coded
binary protocol. But experience has shown that the benefits of having commands be easy for human beings to
describe and understand outweigh any marginal gain in efficiency that you might get at the cost of making
things tricky and opaque.

Therefore, what the server daemon ships back to you via TCP/IP is also text. The beginning of the response
will look something like this (a few headers have been suppressed):

HTTP/1.1 200 OK
Date: Sat, 10 Oct 1998 18:43:35 GMT
Server: Apache/1.2.6 Red Hat
Last−Modified: Thu, 27 Aug 1998 17:55:15 GMT
Content−Length: 2982
Content−Type: text/html

These headers will be followed by a blank line and the text of the web page (after which the connection is
dropped). Your browser just displays that page. The headers tell it how (in particular, the Content−Type
header tells it the returned data is really HTML).

The Unix and Internet Fundamentals HOWTO

12.4. TCP and IP 25

13. To Learn More
There is a Reading List HOWTO that lists books you can read to learn more about the topics we have
touched on here. You might also want to read the How To Become A Hacker document.

13. To Learn More 26

http://www.linuxdoc.org/HOWTO/Reading-List-HOWTO/
http://www.tuxedo.org/~esr/faqs/hacker-howto.html

	Table of Contents
	1. Introduction
	1.1. Purpose of this document
	1.2. New versions of this document
	1.3. Feedback and corrections
	1.4. Related resources

	2. Basic anatomy of your computer
	3. What happens when you switch on a computer?
	4. What happens when you log in?
	5. What happens when you run programs from the shell?
	6. How do input devices and interrupts work?
	7. How does my computer do several things at once?
	8. How does my computer keep processes from stepping on each other?
	8.1. Virtual memory: the simple version
	8.2. Virtual memory: the detailed version
	8.3. The Memory Management Unit

	9. How does my computer store things in memory?
	9.1. Numbers
	9.2. Characters

	10. How does my computer store things on disk?
	10.1. Low-level disk and file system structure
	10.2. File names and directories
	10.3. Mount points
	10.4. How a file gets looked up
	10.5. File ownership, permissions and security
	10.6. How things can go wrong

	11. How do computer languages work?
	11.1. Compiled languages
	11.2. Interpreted languages
	11.3. P-code languages

	12. How does the Internet work?
	12.1. Names and locations
	12.2. The Domain Name System
	12.3. Packets and routers
	12.4. TCP and IP
	12.5. HTTP, an application protocol

	13. To Learn More

