
Free Software Project Management HOWTO

Benjamin "Mako" Hill

 mako@debian.org

Revision History

Revision v0.3.1 18 June 2001 Revised by: bch

Revision v0.3 5 May 2001 Revised by: bch

Revision v0.2.1 10 April 2001 Revised by: bch

Revision v0.2 8 April 2001 Revised by: bch

Revision v0.01 27 March 2001 Revised by: bch

Initial Release

This HOWTO is designed for people with experience in programming and some skills in managing a
software project but who are new to the world of free software. This document is meant to act as a guide to
the non−technical aspects of free software project management and was written to be a crash course in the
people skills that aren't taught to commercial coders but that can make or break a free software project.

Table of Contents
1. Introduction...1

1.1. Copyright Information..1
1.2. Disclaimer...1
1.3. New Versions..2
1.4. Credits...2
1.5. Feedback...3
1.6. Translations...3

2. Starting a Project..4
2.1. Choosing a Project..4

2.1.1. Identify and articulate your idea...4
2.1.2. Evaluate your idea..4

2.2. Naming your project...6
2.3. Licensing your Software...6

2.3.1. Choosing a license..7
2.3.2. The mechanics of licensing...7
2.3.3. Final license warning..8

2.4. Choosing a Method of Version Numbering..8
2.5. Documentation..10

2.5.1. Man pages...10
2.5.2. Command line accessible documentation...11
2.5.3. Files users will expect...11
2.5.4. Website...12
2.5.5. Other documentation hints..13

2.6. Other Presentation Issues..13
2.6.1. Package formats..13
2.6.2. Version control systems..13
2.6.3. Useful tidbits and presentation hints...14

3. Maintaining a Project: Interacting with Developers...15
3.1. Delegating Work...15

3.1.1. How to delegate..16
3.2. Accepting and Rejecting Patches..17

3.2.1. Technical judgment...17
3.2.2. Rejecting patches..17

3.3. Stable and Development Branches...19
3.4. Other Project Management issues...20

3.4.1. Freezing..20
3.5. Forks...21

4. Maintaining a Project: Interacting with Users..22
4.1. Testing and Testers...22

4.1.1. Automated testing...23
4.1.2. Testing by testers..23

4.2. Setting up Support Infrastructure..24
4.2.1. Documentation..24
4.2.2. Mailing lists..24
4.2.3. Other support ideas...25

Free Software Project Management HOWTO

i

Table of Contents
4.3. Releasing Your Program...26

4.3.1. When to release...26
4.3.2. How to release..26
4.3.3. Alpha, beta, and development releases...26

4.4. Announcing Your Project...27
4.4.1. Mailing lists and USENET...27
4.4.2. freshmeat.net...28

Bibliography..29

Printed Books..30

Web−Accessable Resources..31

Advogato Articles..32

A. GNU Free Documentation License...34

A.1. 0. PREAMBLE..35

A.2. 1. APPLICABILITY AND DEFINITIONS..36

A.3. 2. VERBATIM COPYING...37

A.4. 3. COPYING IN QUANTITY ..38

A.5. 4. MODIFICATIONS ...39

A.6. 5. COMBINING DOCUMENTS...41

A.7. 6. COLLECTIONS OF DOCUMENTS..42

A.8. 7. AGGREGATION WITH INDEPENDENT WORKS...43

A.9. 8. TRANSLATION ...44

A.10. 9. TERMINATION ...45

A.11. 10. FUTURE REVISIONS OF THIS LICENSE..46

A.12. Addendum..47

Free Software Project Management HOWTO

ii

1. Introduction
Skimming through freshmeat.net provides mountains of reasons for this HOWTO's existence−−the Internet is
littered with excellently written and useful programs that have faded away into the universe of free software
forgottenness. This dismal scene made me ask myself, "Why?"

This HOWTO tries to do a lot of things (probably too many), but it can't answer that question and won't
attempt it. What this HOWTO will attempt to do is give your Free Software project a fighting chance−−an
edge. If you write a piece of crap that no one is interested in, you can read this HOWTO until you can recite it
in your sleep and your project will probably fail. Then again, you can write a beautiful, relevant piece of
software and follow every instruction in this HOWTO and your software may still not make it. Sometimes
life is like that. However, I'll go out a limb and say that if you write a great, relevant pieces of software and
ignore the advise in this HOWTO, you'll probably fail more often.

A lot of the information in this HOWTO is best called common sense. Of course, as any debate on interfaces
will prove, what is common sense to some programmers proves totally unintuitive to others. After explaining
bits and pieces of this HOWTO to Free Software developers on several occasions, I realized that writing this
HOWTO might provide a useful resource and a forum for programmers to share ideas about what has and has
not worked for them.

As anyone involved in any of what seems like an unending parade of ridiculous intellectual property clashes
will attest to, a little bit of legalese proves important.

1.1. Copyright Information

This document is copyrighted (c) 2000 Benjamin (Mako) Hill and is distributed under the terms of the GNU
Free Documentation License.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation with no
Invariant Sections, no Front−Cover Texts, and no Back−Cover Texts. A copy of the license can be found in
Appendix A.

1.2. Disclaimer

No liability for the contents of this documents can be accepted. Use the concepts, examples and other content
at your own risk. As this is a new edition of this document, there may be errors and inaccuracies, that may of
course be damaging to your project (and potentially your system). Proceed with caution, and although this is
highly unlikely, the author(s) does not take any responsibility for that.

All copyrights are held by their by their respective owners, unless specifically noted otherwise. Use of a term
in this document should not be regarded as affecting the validity of any trademark or service mark.

Naming of particular products or brands should not be seen as endorsements.

1. Introduction 1

1.3. New Versions

This version is the part of the third pre−release cycle of this HOWTO. It is written to be released to
developers for critique and brainstorming. Please keep in mind that this version of the HOWTO is still in an
infant stage and will continue to be revised extensively.

The latest version number of this document should always be listed on the projects homepage hosted by
yukidoke.org.

The newest version of this HOWTO will always be made available at the same website, in a variety of
formats:

HTML. •
HTML (single page). •
plain text. •
Compressed postscript. •
Compressed SGML source. •

1.4. Credits

In this version I have the pleasure of acknowledging:

Anyone who gave me an idea for a better name and everyone who assured me that a Project Management
HOWTO didn't necessary sound corporate.

Josh Crawford, Andy King, and Jaime Davila who all read through this in entirety and gave me feedback that
has helped me make changes and improvements to this document. I can't thank you guys enough for your
help. An extra "Thank You" goes to Andy King who who read through this several times and submitted
patches to make life easier for me.

Karl Fogel, the author of Open Source Development with CVS published by the Coriolis Open Press. Large
parts of his book are available on the web. 225 pages of the book are available under the GPL and constitute
the best tutorial on CVS I've ever seen. The rest of the book covers, "the challenges and philosophical issues
inherent in running an Open Source project using CVS." The book does a good job of covering some of the
subjects brought up in this HOWTO and much more. The book's website has information on ordering the
book and provides several translations of the chapters on CVS. If you are seriously interested in running a
Free Software project, you want this book. I tried to mention Fogel in sections of this HOWTO where I knew
I was borrowing directly from his ideas. If I missed any, I'm sorry. I'll try and have those fixed in future
versions.

Karl Fogel can be reached at <kfogel (at) red−bean (dot) com>

Also providing support material, and inspiration for this HOWTO is Eric S. Raymond for his prolific,
consistent, and carefully crafted arguments and Lawrence Lessig for reminding me of the importance of Free
Software. Additionaly, I want to thank every user and developer involved with the Debian Project. The
project has provided me with a home, a place to practice free software advocacy, a place to make a
difference, a place to learn from those who have been involved with the movement much longer than I, and
proof of a free software project that definitely, definitely works.

Free Software Project Management HOWTO

1.3. New Versions 2

http://yukidoke.org/~mako/projects/howto
http://yukidoke.org
http://yukidoke.org/~mako/projects/howto/FreeSoftwareProjectManagement-HOWTO/t1.html
http://yukidoke.org/~mako/projects/howto/FreeSoftwareProjectManagement-HOWTO.html
http://yukidoke.org/~mako/projects/howto/FreeSoftwareProjectManagement-HOWTO.txt
http://yukidoke.org/~mako/projects/howto/FreeSoftwareProjectManagement-HOWTO.ps.gz
http://yukidoke.org/~mako/projects/howto/FreeSoftwareProjectManagement-HOWTO.sgml.gz
http://cvsbook.red-bean.com
http://cvsbook.red-bean.com
mailto:kfogel (at) red-bean (dot) com
http://www.debian.org

Above all, I want to thank Richard Stallman for his work at the Free Software Foundation and for never
giving up. Stallman provides and articulates the philosophical basis that attracts me to free software and that
drives me towards writing a document to make sure it succeeds. RMS can always be emailed at <rms
(at) gnu (dot) org>.

1.5. Feedback

Feedback is always and most certainly welcome for this document. Without your submissions and input, this
document wouldn't exist. Do you feel that something is missing? Don't hesitate to contact me to have me
write a chapter, section, or subsection or to write one yourself. I want this document to be a product of the
Free Software development process that it heralds and I believe that its ultimate success will be rooted in its
ability to do this. Please send your additions, comments, and criticisms to the following email address:
<mako@debian.org>.

1.6. Translations

I know that not everyone speaks English. Translations are nice and I'd love for this HOWTO to gain the kind
of international reach afforded by translated versions.

However, this HOWTO is still young and I have to yet to be contacted about a translation so English is all
that is currently available. If you would like to help with or do a translation, you will gain my utmost respect
and admiration and you'll get to be part of a cool process. If you are at all interested, please don't hesitate to
contact me at: <mako@debian.org>.

Free Software Project Management HOWTO

1.5. Feedback 3

mailto:rms (at) gnu (dot) org
mailto:rms (at) gnu (dot) org
mailto:mako@debian.org
mailto:mako@debian.org

2. Starting a Project
With very little argument, the beginning is the most difficult period in a project's life to do successful free
software project managment. Laying a firm foundation will determine whether your project flourishes or
withers away and dies. It is also the subject that is of most immediate interest to anyone reading this
document as a tutorial.

Starting a project involves a dilemma that you as a developer must try and deal with: no potential user for
your program is interested in a program that doesn't work, while the development process that you want to
employ holds involvement of users as imperative.

It is in these dangerous initial moments that anyone working to start a free software project must try and
strike a balance along these lines. One of the most important ways that someone trying to start a project can
work towards this balance is by establishing a solid framework for the development process through some of
the suggestions mentioned in this section.

2.1. Choosing a Project

If you are reading this document, there's a good chance you already have an idea for a project in mind.
Chances are also pretty good that it fills a percieved gap by doing something that no other free software
project does or by doing something in a way that is unique enough to necessitate a brand new piece of
software.

2.1.1. Identify and articulate your idea

Eric S. Raymond writes about how free software projects start in his essay, "The Cathedral and the
Bazaar," which comes as required reading for any free software developer. It is available online .

In "The Cathedral and the Bazaar," Raymond tells us that: "every good work of software starts by scratching
a developers itch." Raymond's now widely accepted hypothesis is that new free software programs are
written, first and foremost, to solve a specific problem facing the developer.

If you have an idea for a program in mind, chances are good that it targets a specific problem or "itch" you
want to see scratched. This idea is the project. Articulate it clearly. Write it out. Describe the problem you
will attack in detail. The success of your project in tackling a particular problem will be tied to your ability to
identify that problem clearly early on. Find out exactly what it is that you want your project to do.

Monty Manley articulates the importance of this initial step in an essay, "Managing Projects the Open Source
Way." As the next section will show, there is a lot of work that needs to be done before software is even
ready to be coded. Manley says, "Beginning an OSS project properly means that a developer must, first and
foremost, avoid writing code too soon!"

2.1.2. Evaluate your idea

In evaluating your idea, you need to first ask yourself a few questions. This should happen before you move

2. Starting a Project 4

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://news.linuxprogramming.com/news_story.php3?ltsn=2000-10-31-001-05-CD
http://news.linuxprogramming.com/news_story.php3?ltsn=2000-10-31-001-05-CD

any further through this HOWTO. Ask yourself: Is the free software development model really the right one
for your project?

Obviously, since the program scratches your itch, you are definitely interested in seeing it implemented in
code. But, because one hacker coding in solitude fails to qualify as a free software development effort, you
need to ask yourself a second question: Is anybody else interested?

Sometimes the answer is a simple "no." If you want to write a set of scripts to sort your MP3 collection on
your machine, maybe the free software development model is not the best one to choose. However, if you
want to write a set of scripts to sort anyone's MP3s, a free software project might fill a useful gap.

Luckily, the Internet is a place so big and so diverse that, chances are, there is someone, somewhere, who
shares your interests and who feels the same "itch." It is the fact that there are so many people with so many
similar needs and desires that introduces the third major question: Has somebody already had your idea or a
reasonably similar one?

2.1.2.1. Finding Similar Projects

There are places you can go on the web to try and answer the question above. If you have experience with the
free software community, you are probably already familiar with many of these sites. All of the resources
listed below offer searching of their databases:

freshmeat.net

freshmeat.net describes itself as, "the Web's largest index of Linux and Open Source software" and
its reputation along these lines is totally unparalleled and unquestioned. If you can't find it on
freshmeat, its doubtful that you (or anyone else) will find it at all.

Slashdot

Slashdot provides "News for Nerds. Stuff that matters," which usually includes discussion of free
software, open source, technology, and geek culture news and events. It is not unusual for a
particularly sexy development effort to be announced here, so it is definitely worth checking.

SourceForge

SourceForge houses and facilitates a growing number of open source and free software projects. It is
also quickly becoming a nexus and a necessary stop for free software developers. SourceForge's
software map and new release pages should be necessary stops before embarking on a new free
software project. SourceForge also provides a Code Snippet Library which contains useful reusable
chunks of code in an array of languages which can come in useful in any project.

Google and Google's Linux Search

Google and Google's Linux Search, provides powerful web searches that may reveal people working
on similar projects. It is not a catalog of software or news like freshmeat or Slashdot, but it is worth
checking to make sure you aren't pouring your effort into a redundant project.

Free Software Project Management HOWTO

2.1.2. Evaluate your idea 5

http://freshmeat.net
http://slashdot.org
http://sourceforge.net
http://sourceforge.net/softwaremap/trove_list.php
http://sourceforge.net/new/
http://sourceforge.net/snippet/
http://www.google.com
http://www.google.com/linux

2.1.2.2. Deciding to Proceed

Once you have successfully charted the terrain and have an idea about what kinds of similar free software
projects exist, every developer needs to decide whether to proceed with their own project. It is rare that a new
project seeks to accomplish a goal that is not at all similar or related to the goal of another project. Anyone
starting a new project needs to ask themselves: "Will the new project be duplicating work done by another
project? Will the new project be competing for developers with an existing project? Can the goals of the new
project be accomplished by adding functionality to an existing project?"

If the answer to any of these questions is "yes," try to contact the developer of the existing project(s) in
question and see if he or she might be willing to collaborate with you.

For many developers this may be the single most difficult aspect of free software project managment, but it is
an essential one. It is easy to become fired up by an idea and get caught up in the momentum and excitement
of a new project. It is often extremely difficult to do, but it is important that any free software developer
remembers that the best interests of the free software community and the quickest way to accomplish your
own project's goals and the goals of similar projects can often be accomplished by not starting a new
development effort.

2.2. Naming your project

While there are plenty of projects that fail with descriptive names and plenty that succeed without them, I
think naming your project is worth giving a bit of thought. Leslie Orchard tackles this issue in an Advogato
article. His article is short and definately worth looking over quickly.

The synopsis is that Orchard recommends you pick a name where, after hearing the name, many users or
developers will both:

Know what the project does. •
Remember it tomorrow. •

Humorously, Orchard's project, "Iajitsu," does neither. It is probably unrelated that development has
effectively frozen since the article was written.

He makes a good point though. There are companies whose only job is to make names for pieces of software.
They make ridiculous amount of money doing it and are supposedly worth it. While you probably can't aford
a company like this, you can afford to learn from their existance and think a little bit about the name you are
giving your project because it does matter.

If there is a name you really want but it doesn't fit Orchard's criteria, you can still go ahead. I thought
"gnubile" was one of the best I'd heard for a free software project ever and I still talk about it long after I've
stopped using the program. However, if you can be flexible on the subject, listen to Orchard's advice. It might
help you.

2.3. Licensing your Software

On one (somewhat simplistic) level, the difference between a piece of free software and a piece of propriety

Free Software Project Management HOWTO

2.1.2. Evaluate your idea 6

http://www.advogato.org/article/67.html
http://www.advogato.org/article/67.html

software is the license. A license helps you as the developer by protecting your legal rights to have your
software distributed under your terms and helps demonstrate to those who wish to help you or your project
that they are encouraged to join.

2.3.1. Choosing a license

Any discussion of licenses is also sure to generate at least a small flame war as there are strong feelings that
some free software licenses are better than others. This discussion also brings up the question of "Open
Source Software" and the debate over the terms "Open Source Software" and "Free Software". However,
because I've written the Free Software Project Management HOWTO and not the Open Source Software
Project Management HOWTO, my own allegiances in this argument are in the open.

In attempting to reach a middle ground through diplomacy without sacrificing my own philosophy, I will
recommend picking any license that conforms to the Debian Free Software Guidelines. Originally compiled
by the Debian project under Bruce Perens, the DFSG forms the first version of the Open Source
Definition. Examples of free licenses given by the DFSG are the GPL, the BSD, and the Artistic License.

Conforming to the definition of free software offered by Richard Stallman in "The Free Software Definition",
any of these licenses will uphold, "users' freedom to run, copy, distribute, study, change and improve the
software." There are plenty of other licenses that also conform to the DFSG but sticking with a more
well−known license will offer the advantage of immediate recognition and understanding.

In attempting a more in−depth analysis, I agree with Karl Fogel's description of licenses as falling into two
groups: those that are the GPL and those that are not the GPL.

Personally, I license all my software under the GPL. Created and protected by the Free Software Foundation
and the GNU Project, the GPL is the license for the Linux kernel, GNOME, Emacs, and the vast majority of
GNU/Linux software. It's the obvious choice but I also believe it is a good one. Any BSD fanatic will urge
you to remember that there is a viral aspect to the GPL that prevents the mixture of GPL'ed code with
non−GPL'ed code. To many people (myself included), this is a benefit, but to some, it is a major drawback.

The three major licenses can be found at the following locations:

The GNU General Public License•
The BSD License•
The Artistic License•

In any case, please read through any license before your release your software under it. As the primary
developer, you can't afford any license surprises.

2.3.2. The mechanics of licensing

The text of the GPL offers a good description of the mechanics of applying a license to a piece of software.
My quick checklist for applying a license includes:

If at all possible, attach and distribute a full copy of the license with the source and binary by
including a separate file.

•

Free Software Project Management HOWTO

2.3.1. Choosing a license 7

http://www.debian.org/social_contract
http://www.opensource.org/docs/definition_plain.html
http://www.opensource.org/docs/definition_plain.html
http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/copyleft/gpl.html
http://www.debian.org/misc/bsd.license
http://language.perl.com/misc/Artistic.html
http://www.gnu.org/copyleft/gpl.html#SEC4

At the top of each source file in your program, attach a notice of copyright and include information
on where the full license can be found. The GPL recommends that each file begin with:

•

one line to give the program's name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place − Suite 330, Boston, MA 02111−1307, USA.

The GPL goes on to recommend attaching information on methods for contacting you (the author)
via email or physical mail.

The GPL continues and suggests that if your program runs in an interactive mode, you should write
the program to output a notice each time it enters interactive mode that includes a message like this
one that points to full information about the programs license:

•

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'. This is free software, and you are welcome
to redistribute it under certain conditions; type `show c'
for details.

Finally, it might be helpful to include a "copyright disclaimer" from an employer or a school if you
work as a programmer or if it seems like your employer or school might be able to make an argument
for ownership of your code later on. These aren't often needed but there are plenty of free software
developers who have gotten into trouble and wish they'd asked for one.

•

2.3.3. Final license warning

Please, please, please, place your software under some license. It may not seem important, and to you it may
not be, but licenses are important. For a piece of software to be included in the Debian GNU/Linux
distribution, it must have a license that fits the Debian Free Software Guidelines. If your software has no
license, it can not be distributed as a package in Debian until you re−release it under a free license. Please
save yourself and others trouble by releasing the first version of your software with a clear license.

2.4. Choosing a Method of Version Numbering

The most important thing about a system of version numbering is that there is one. It may seem pedantic to
emphasize this point but you'd be surprised at the number of scripts and small programs that pop up without
any version number at all.

Free Software Project Management HOWTO

2.3.3. Final license warning 8

http://www.debian.org/social_contract

The second most important thing about a system of numbering is that the numbers always go up. Automatic
version tracking systems and people's sense of order in the universe will fall apart if version numbers don't
rise. It doesn't really matter if 2.1 is a big jump and 2.0.005 is a small jump but it does matter that 2.1 is more
recent than 2.0.005.

Follow these two simple rules and you will not go (too) wrong. Beyond this, the most common technique
seems to be the "major level," "minor level," "patch level" version numbering scheme. Whether you are
familiar with the name or not, you interact with it all the time. The first number is the major number and it
signifies major changes or rewrites. The second number is the minor number and it represents added or
tweaked functionality on top of a largely coherant structure. The third number is the patch number and it
usually will only refer to releases fixing bugs.

The widespread use of this scheme is why I know the nature and relative degree in the differences between a
2.4.12 release of the Linux kernel and a 2.4.11, 2.2.12, and 1.2.12 without knowning anything about any of
the releases.

You can bend or break these rules, and people do. But beware, if you choose to, someone will get annoyed,
assume you don't know, and try and educate you, probably not nicely. I always follow this method and I
implore you to do so as well.

There are several version numbering systems that are well known, useful, and that might be worth looking
into before you release your first version.

Linux kernel version numbering:

The Linux kernel uses a versioning system where any odd minor version number refers to an
development or testing release and any even minor version number refers to a stable version. Think
about it for a second. Under this system, 2.1 and 2.3 kernels were and always will be development or
testing kernels and 2.0, 2.2. and 2.4 kernels are all production code with a higher degree of stability
and more testing.

Whether you plan on having a split development model (as described in Section 3.3) or only one
version released at a time, my experience with several free software projects and with the Debian
project has taught me that use of Linux's version numbering system is worth taking into
consideration. In Debian, all minor versions are stable distributions (2.0, 2.1, etc). However, many
people assume that 2.1 is an unstable or development version and continue to use an older version
until they get so frustrated with the lack of development progress that they complain and figure the
system out. If you never release an odd minor version but only release even ones, nobody is hurt, and
less people are confused. It's an idea worth taking into consideration.

Wine version numbering:

Because of the unusual nature of wine's development where the not−emulator is constantly
improving but not working towards any immediately achievable goal, wine is released every three
weeks. Wine does this by labeling their releases in "Year Month Day" format where each release
might be labeled "wine−XXXXXXXX" where the version from January 04, 2000 would be
"wine−20000104". For certain projects, "Year Month Day" format can make a lot of sense.

Mozilla milestones:

Free Software Project Management HOWTO

2.3.3. Final license warning 9

When one considers Netscape 6 and vendor versions, the mozilla's project development structure is
one of the most complex free software models available. The project's version numbering has
reflected the unique situation in which it is developed.

Mozilla's version numbering structure has historically been made up of milestones. From the
beginning of the mozilla project, the goals of the project in the order and degree to which they were
to be achieved were charted out on a series of road maps. Major points and achievements along these
road−maps were marked as milestones. Therefore, although mozilla was built and distributed nightly
as "nightly builds," on a day when the goals of a milestone on the road−map had been reached, that
particular build was marked as a "milestone release."

While I haven't seen this method employed in any other projects to date, I like the idea and think that
it might have value in any testing or development branch of a large application under heavy
development.

2.5. Documentation

A huge number of otherwise fantastic free software applications have withered and died because their author
was the only person who knew how to use them fully. Even if your program is written primarily for a
techno−savvy group of users, documentation is helpful and even necessary for the survival of your project.
You will learn later in Section 4.3 that you should always release something that is usable. A piece of
software without documentation is not usable.

There are lots of different people you should document for and there are lots of ways to document your
project. The importance of documentation in source code to help facilitate development by a large community
is vital but it falls outside the scope of this HOWTO. This being the case, this section deals with useful tactics
for user−directed documentation.

A combination of tradition and necessity has resulted in a semi−regular system of documentation in most free
software projects that is worth following. Both users and developers expect to be able to get documentation in
several ways and it's essential that you provide the information they are seeking in a form they can read if
your project is ever going to get off the ground. People have come to expect:

2.5.1. Man pages

Your users will want to be able to type "man yourprojectname" end up with a nicely formatted man page
highlighting the basic use of your application. Make sure that before you release your program, you've
planned for this.

Man pages are not difficult to write. There is excellent documentation on the man page writing process
available through the "The Linux Man−Page−HOWTO" which is available through the Linux Documentation
project (LDP) and is written by Jens Schweikhardt. It is available from Schweikhardt's site or from the LDP.

It is also possible to write man pages using DocBook SGML. Because man pages are so simple and the
DocBook method relatively new, I have not been able to follow this up but would love help from anyone who
can give me more information on how exactly how this is done.

Free Software Project Management HOWTO

2.5. Documentation 10

http://www.mozilla.org/roadmap.html
http://www.schweikhardt.net/man_page_howto.html
http://www.linuxdoc.org/HOWTO/mini/Man-Page.html

2.5.2. Command line accessible documentation

Most users will expect some basic amount of documentation to be easily available from the command line.
For few programs should this type of documentation extend for more than one screen (24 or 25 lines) but it
should cover the basic usage, a brief (one or two sentence) description of the program, a list of the commands
with explanations, as well as all the major options (also with explanations), plus a pointer to more in−depth
documentation for those who need it. The command line documentation for Debian's apt−get serves as an
excellent example and a useful model:

apt 0.3.19 for i386 compiled on May 12 2000 21:17:27
Usage: apt−get [options] command
 apt−get [options] install pkg1 [pkg2 ...]

apt−get is a simple command line interface for downloading and
installing packages. The most frequently used commands are update
and install.

Commands:
 update − Retrieve new lists of packages
 upgrade − Perform an upgrade
 install − Install new packages (pkg is libc6 not libc6.deb)
 remove − Remove packages
 source − Download source archives
 dist−upgrade − Distribution upgrade, see apt−get(8)
 dselect−upgrade − Follow dselect selections
 clean − Erase downloaded archive files
 autoclean − Erase old downloaded archive files
 check − Verify that there are no broken dependencies

Options:
 −h This help text.
 −q Loggable output − no progress indicator
 −qq No output except for errors
 −d Download only − do NOT install or unpack archives
 −s No−act. Perform ordering simulation
 −y Assume Yes to all queries and do not prompt
 −f Attempt to continue if the integrity check fails
 −m Attempt to continue if archives are unlocatable
 −u Show a list of upgraded packages as well
 −b Build the source package after fetching it
 −c=? Read this configuration file
 −o=? Set an arbitary configuration option, eg −o dir::cache=/tmp
See the apt−get(8), sources.list(5) and apt.conf(5) manual
pages for more information and options.

It has become a GNU convention to make this type of information accessible with the "−h" and the
"−−help" options. Most GNU/Linux users will expect to be able to retrieve basic documentation these ways
so if you choose to use different methods, be prepared for the flames and fallout that may result.

2.5.3. Files users will expect

In addition to man pages and command−line help, there are certain files where people will look for
documentation, especially in any package containing source code. In a source distribution, most of these files
can be stored in the root directory of the source distribution or in a subdirectory of the root called "doc" or

Free Software Project Management HOWTO

2.5.2. Command line accessible documentation 11

"Documentation." Common files in these places include:

README or Readme

A document containing all the basic installation, compilation, and even basic use instructions that
make up the bare minimum information needed to get the program up and running. A README is
not your chance to be verbose but should be concise and effective. An ideal README is at least 30
lines long and more no more than 250.

INSTALL or Install

The INSTALL file should be much shorter than the README file and should quickly and concisely
describe how to build and install the program. Usually an INSTALL file simply instructs the user to
run "./configure; make; make install" and touches on any unusual options or actions that may be
necessary. For most relatively standard install procedures and for most programs, INSTALL files are
as short as possible and are rarely over 100 lines.

CHANGELOG, Changelog, ChangeLog, or changelog

A CHANGELOG is a simple file that every well−managed free software project should include. A
CHANGELOG is simple the file that, as its name implies, logs or documents the changes you make
to your program. The most simple way to maintain a CHANGELOG is to simply keep a file with the
source code for your program and add a section to the top of the CHANGELOG with each release
describing what has been changed, fixed, or added to the program. It's a good idea to post the
CHANGELOG onto the website as well because it can help people decide whether they want or need
to upgrade to a newer version or wait for a more significant improvement.

NEWS

A NEWS file and a ChangeLog are similar. Unlike a CHANGELOG, a NEWS file is not typically
updated with new versions. Whenever new features are added, the developer responisble will make a
note in the NEWS file. NEWS files should not have to be changed before a release (they should be
kept up to date all along) but it's usually a good idea to check first anyway because often developers
just forget to keep them as current as they should.

FAQ

For those of you that don't already know, FAQ stands for Frequently Asked Questions and a FAQ is
a collection of exactly that. FAQs are not difficult to make. Simply make a policy that if you are
asked a question or see a question on a mailing list two or more times, add the question (and its
answer) to your FAQ. FAQs are more optional than the files listed above but they can save your time,
increase usability, and decrease headaches on all sides.

2.5.4. Website

It's only indirectly an issue of documentation but a good website is quickly becoming an essential part of any
free software project. Your website should provide access to your documentation (in HTML if possible). It
should also include a section for news and events around your program and a section that details the process
of getting involved with development or testing and make an open invitation. It should also supply links to

Free Software Project Management HOWTO

2.5.4. Website 12

any mailing lists, similar websites, and provide a direct link to all the available ways of downloading your
software.

2.5.5. Other documentation hints

All your documentation should be in plaintext, or, in cases where it is on your website primarily, in HTML.
Everyone can cat a file, everyone has a pager, (almost) everyone can render HTML. You are welcome to
distribute information in PDF, PostScript, RTF, or any number of other widely used formats but this
information must also be available in plaintext or HTML or people will be very angry at you.

It doesn't hurt to distribute any documentation for your program from your website (FAQs etc) with your
program. Don't hesitate to throw any of this in the program's tarball. If people don't need it, they will delete it.
I can repeat it over and over: Too much documentation is not a sin.

2.6. Other Presentation Issues

Many of the remaining issues surrounding the creation of a new free software program fall under what most
people describe as common sense issues. Its often said that software engineering is 90 percent common sense
combined with 10 percent specialized knowledge. Still, they are worth noting briefly in hopes that they may
remind a developer of something they may have forgotten.

2.6.1. Package formats

Package formats may differ depending on the system you are developing for. For windows based software,
Zip archives (.zip) usually serve as the package format of choice. If you are developing for GNU/Linux,
*BSD, or any UN*X, make sure that your source code is always available in tar'ed and gzip'ed format
(.tar.gz). UNIX compress (.Z) has gone out of style and usefulness and faster computers have brought bzip2
(.bz2) into the spot−light as a more effective compression medium. I now make all my releases available in
both gzip'ed and bzip2'ed tarballs.

Binary packages should always be distribution specific. If you can build binary packages against a current
version of a major distribution, you will only make your users happy. Try to foster relationships with users or
developers of large distributions to develop a system for the consistent creation of binary packages. It's often
a good idea to provide RedHat RPM's (.rpm), Debian deb's (.deb) and source RPM's SRPM's if possible.
Remember: While these binaries packages are nice, getting the source packaged and released should always
be your priority. Your users or fellow developers can and will do the the binary packages for you.

2.6.2. Version control systems

A version control system can make a lot of these problems of packaging (and a lot of other problems
mentioned in this HOWTO) less problematic. If you are using *NIX, CVS is your best bet. I recommend Karl
Fogel's book on the subject (and the posted HTML version) wholeheartedly.

CVS or not, you should probably invest some time into learning about a version control system because it
provides an automated way of solving many of the problems described by this HOWTO. I am not aware of

Free Software Project Management HOWTO

2.5.5. Other documentation hints 13

http://cvsbook.red-bean.com/

any free version control systems for Windows or MacOS but I know that CVS clients exist for both
platforms. Websites like SourceForge do a great job as well with a nice, easy−to−use web interface to CVS.

I'd love to devote more space in this HOWTO to CVS because I love it (I even use CVS to keep versions
straight on this HOWTO!) but I think it falls outside the scope of this document and should have (already
has) its own HOWTO.

2.6.3. Useful tidbits and presentation hints

Other useful hints include:

Make sure that your program can always be found in a single location. Often this means that you
have a single directory accessible via FTP or the web where the newest version can be quickly
recognized. One effective technique is a provide a symlink called "yourprojectname−latest" that is
always pointing to the most recent released or development version of your free software application.
Keep in mind that this location will recieve many requests for downloads around releases so make
sure that the server you choose has adequate bandwidth.

•

Make sure that there is a consistent email address for bug reports. It's usually a good idea to make
this something that is NOT your primary email address like yourprojectname@host or
yourprojectname−bugs@host. This way, if you ever decide to hand over maintainership or if your
email address changes, you simply need to change where this email address forwards. It also will
allow for more than one person to deal with the influx of mail that is created if your project becomes
as huge as you hope it will.

•

Free Software Project Management HOWTO

2.6.3. Useful tidbits and presentation hints 14

http://sourceforge.net

3. Maintaining a Project: Interacting with
Developers
Once you have gotten your project started, you have overcome the most difficult hurdles in the development
process of your program. Laying a firm foundation is essential, but the development process itself is equally
important and provides just as many opportunities for failure. In the next two sections, I will describe running
a project by discussing how to maintain a development effort through interactions with developers and with
users.

In releasing your program, your program becomes free software. This transition is more than just a larger user
base. By releasing your program as free software, your software becomes the free software
community's software. The direction of your software's development will be reshaped, redirected, and fully
determined by your users and, to a larger extent, by other developers in the community.

The major difference between free software development and propriety software development is the
developer base. As the leader of a free software project, you need to attract and keep developers in a way that
leaders of proprietary software projects simply don't have to worry about. As the person leading development
of a free software project, you must harness the work of fellow developers by making responsible decisions
and by responsibly choosing not to make decisions. You have to direct developers without being overbearing
or bossy. You need to strive to earn respect and never forget to give it out.

3.1. Delegating Work

By now, you've hypothetically followed me through the early programming of a piece of software, the
creation of a website and system of documentation, and we've gone ahead and (as will be discussed in
Section 4.3) released it to the rest of the world. Times passes, and if things go well, people become interested
and want to help. The patches begin flowing in.

Like the parent of any child who grows up, it's now time to wince, smile and do most difficult thing in any
parents life: It's time to let go.

Delegation is the political way of describing this process of "letting go." It is the process of handing some of
the responsibility and power over your project to other responsible and involved developers. It is difficult for
anyone who has invested a large deal of time and energy into a project but it essential for the growth of any
free software project. One person can only do so much. A free software project is nothing without the
involvement of a group of developers. A group of developers can only be maintained through respectful and
responsible leadership and delegation.

As your project progresses, you will notice people who are putting significant amounts of time and effort into
your project. These will be the people submitting the most patches, posting most on the mailing lists, and
engaging in long email discussions. It is your responsibility to contact these people and to try and shift some
of the power and responsibility of your position as the project's maintainer onto them (if they want it). There
are several easy ways you can do this:

In a bit of a disclaimer, delegation need not mean rule by comittee. In many cases it does and this has been
proven to work. In other cases this has created problems. Managing Projects the Open Source Way argues
that "OSS projects do best when one person is the clear leader of a team and makes the big decisions (design

3. Maintaining a Project: Interacting with Developers 15

http://news.linuxprogramming.com/news_story.php3?ltsn=2000-10-31-001-05-CD

changes, release dates, and so on)." I think this often true but would urge developers to consider the ideas that
the project leader need not be the project's founder and that these important powers need not all rest with one
person but that a release manager may be different than a lead developer. These situations are tricky
politically so be careful and make sure it's necessary before you go around empowering people.

3.1.1. How to delegate

You may find that other developers seem even more experienced or knowledgeable than you. Your job as a
maintainer does not mean you have to be the best or the brightest. It means you are responsible for showing
good judgment and for recognizing which solutions are maintainable and which are not.

Like anything, its easier to watch others delegate than to do it yourself. In a sentence: Keep an eye out for
other qualified developers who show an interest and sustained involvement with your project and try and
shift responsibility towards them. The following ideas might be good places to start or good sources of
inspiration:

3.1.1.1. Allow a larger group of people to have write access to your CVS repository and
make real efforts towards rule by a committee

Apache is an example of a project that is run by small group of developers who vote on major technical
issues and the admission of new members and all have write access to the main source repository. Their
process is detailed online.

The Debian Project is an extreme example of rule by committee. At current count, more than 700 developers
have full responsibility for aspects of the project. All these developers can upload into the main FTP server,
and vote on major issues. Direction for the project is determined by the project's social contract and a
constitution. To facilitate this system, there are special teams (i.e. the install team, the Japanese language
team) as well as a technical committee and a project leader. The leader's main responsibility is to, "appoint
delegates or delegate decisions to the Technical Committee."

While both of these projects operate on a scale that your project will not (at least initially), their example is
helpful. Debian's idea of a project leader who can do nothing but delegate serves as a caricature of how a
project can involve and empower a huge number of developers and grow to a huge size.

3.1.1.2. Publicly appoint someone as the release manager for a specific release

A release manager is usually responsible for coordinating testing, enforcing a code freeze, being responsible
for stability and quality control, packaging up the software, and placing it in the appropriate places to be
downloaded.

This use of the release manager is a good way to give yourself a break and to shift the responsibility for
accepting and rejecting patches onto someone else. It is a good way of very clearly defining a chunk of work
on the project as belonging to a certain person and its a great way of giving yourself room to breath.

Free Software Project Management HOWTO

3.1.1. How to delegate 16

http://httpd.apache.org/
http://httpd.apache.org/ABOUT_APACHE.html
http://www.debian.org/
http://www.debian.org/social_contract
http://www.debian.org/devel/constitution

3.1.1.3. Delegate control of an entire branch

If your project chooses to have branches (as described in Section 3.3), it might be a good idea to appoint
someone else to be the the head of a branch. If you like focusing your energy on development releases and
the implementation of new features, hand total control over the stable releases to a well−suited developer.

The author of Linux, Linus Torvalds, came out and crowned Alan Cox as "the man for stable kernels." All
patches for stable kernels go to Alan and, if Linus were to be taken away from work on Linux for any reason,
Alan Cox would be more than suited to fill his role as the acknowledged heir to the Linux maintainership.

3.2. Accepting and Rejecting Patches

This HOWTO has already touched on the fact that as the maintainer of a free software project, one of your
primary and most important responsibilities will be accepting and rejecting patches submitted to you by other
developers.

3.2.1. Technical judgment

In Open Source Development with CVS, Karl Fogel makes a convincing argument that the most important
things to keep in mind when rejecting or accepting patches are:

A firm knowledge of the scope of your program (that's the "idea" I talked about in Section 2.1); •
The ability to recognize, facilitate, and direct "evolution" of your program so that the program can
grow and change and incorporate functionality that was originally unforeseen;

•

The necessity to avoid digressions that might expand the scope of the program too much and result
and push the project towards an early death under its own weight and unwieldiness.

•

These are the criteria that you as a project maintainer should take into account each time you receive a patch.

Fogel elaborates on this and states the "the questions to ask yourself when considering whether to implement
(or approve) a change are:"

Will it benefit a significant percentage of the program's user community? •
Does it fit within the program's domain or within a natural, intuitive extension of that domain? •

The answers to these questions are never straightforward and its very possible (and even likely) that the
person who submitted the patch may feel differently about the answer to these questions than you do.
However, if you feel that that the answer to either of those questions is "no," it is your responsibility to reject
the change. If you fail to do this, the project will become unwieldy and unmaintainable and many ultimately
fail.

3.2.2. Rejecting patches

Rejecting patches is probably the most difficult and sensitive job that the maintainer of any free software
project has to face. But sometimes it has to be done. I mentioned earlier (in Section 3 and in Section 3.1) that
you need to try and balance your responsibility and power to make what you think are the best technical

Free Software Project Management HOWTO

3.1.1. How to delegate 17

decisions with the fact that you will lose support from other developers if you seem like you are on a power
trip or being overly bossy or possessive of the community's project. I recommend that you keep these three
major concepts in mind when rejecting patches (or other changes):

3.2.2.1. Bring it to the community

One of the best ways of justifying a decision to reject a patch and working to not seem like you keep an iron
grip on your project is by not making the decision alone at all. It might make sense to turn over larger
proposed changes or more difficult decisions to a development mailing list where they can be discussed and
debated. There will be some patches (bug fixes, etc.) which will definitely be accepted and some that you feel
are so offbase that they do not even merit further discussion. It is those that fall into the grey area between
these two groups that might merit a quick forward to a mailing list.

I recommend this process wholeheartedly. As the project maintainer you are worried about making the best
decision for the project, for the project's users and developers, and for yourself as a responsible project leader.
Turning things over to an email list will demonstrate your own responsibility and responsive leadership as it
tests and serves the interests of your software's community.

3.2.2.2. Technical issues are not always good justification

Especially towards the beginning of your project's life, you will find that many changes are difficult to
implement, introduce new bugs, or have other technical problems. Try to see past these. Especially with
added functionality, good ideas do not always come from good programmers. Technical merit is a valid
reason to postpone an application of a patch but it is not always a good reason to reject a change outright.
Even small changes are worth the effort of working with the developer submitting the patch to iron out bugs
and incorporate the change if you think it seems like a good addition to your project. The effort on your part
will work to make your project a community project and it will pull a new or less experienced developer into
your project and even teach them something that might help them in making their next patch.

3.2.2.3. Common courtesy

It should go without saying but, above all and in all cases, just be nice. If someone has an idea and cares
about it enough to write some code and submit a patch, they care, they are motivated, and they are already
involved. Your goal as the maintainer is make sure they submit again. They may have thrown you a dud this
time but next time may be the idea or feature that revolutionizes your project.

It is your responsibility to first justify your choice to not incorporate their change clearly and concisely. Then
thank them. Let them know that you a appreciate their help and feel horrible that you can't incorporate their
change. Let them know that you look forward to their staying involved and you hope that the next patch or
idea meshes better with your project because you appreciate their work and want to see it in your application.
If you have ever had a patch rejected after putting a large deal of time, thought, and energy into it, you
remember how it feels and it feels bad. Keep this in mind when you have to let someone down. It's never easy
but you need to do everything you can to make it as not−unpleasant as possible.

Free Software Project Management HOWTO

3.2.2. Rejecting patches 18

3.3. Stable and Development Branches

The idea of stable and development branches has already been described briefly in Section 2.4 and in Section
3.1.1.3. These allusions attest to some of the ways that multiple branches can affect your software. Branches
can let you avoid (to some extent) some of the problems around rejecting patches (as described in Section
3.2) by allowing you to temporarily compromise the stability of your project without affecting those users
who need that stability.

The most common way of branching your project is to have one branch that is stable and one that is for
development. This is the model followed by the Linux kernel that is described in Section 2.4. In this model,
there is always one branch that is stable and always one that is in development. Before any new release, the
development branch goes into a "feature freeze" as described in Section 3.4.1 where major changes and
added features are rejected or put on hold under the development kernel is released as the new stable branch
and major development resumes on the development branch. Bug fixes and small changes that are unlikely to
have any large negative repercussions are incorporated into the stable branch as well as the development
branch.

Linux's model provides an extreme example. On many projects, there is no need to have two versions
constantly available. It may make sense to have two versions only near a release. The Debian project has
historically made both a stable and an unstable distribution available but has expanded to this to include:
stable, unstable, testing, experimental, and (around release time) a frozen distribution that only incorporates
bug fixes during the transition from unstable to stable. There are few projects whose size would necessitate a
system like Debian's but this use of branches helps demonstrate how they can be used to balance consistent
and effective development with the need to make regular and usable releases.

In trying to set up a development tree for yourself, there are several things that might be useful to keep in
mind:

Minimize the number of branches

Debian may be able to make good use of four or five branches but it contains gigabytes of software in
over 5000 packages compiled for 5−6 different architectures. For you, two is probably a good ceiling.
Too many branches will confuse your users (I can't count how many times I had to describe Debian's
system when it only had 2 and sometimes 3 branches!), potential developers and even yourself.
Branches can help but they come at a cost so use them very sparingly.

Make sure that all your different branches are explained

As I mentioned in the preceding paragraph, different branches will confuse your users. Do everything
you can to avoid this by clearly explaining the different branches in a prominent page on your
website and in a README file in the FTP or web directory.

I might also recommend against a mistake that I think Debian has made. The terms
"unstable," "testing," and "experimental" are vague and difficult to rank in order of stability (or
instability as the case may be). Try explaining to someone that "stable" actually means "ultra
stable" and that "unstable" doesn't actually include any unstable software but is really stable software
that is untested as a distribution.

If you are going to use branches, especially early on, keep in mind that people are conditioned to
understand the terms "stable" and "development" and you probably can't go wrong with this simple

Free Software Project Management HOWTO

3.3. Stable and Development Branches 19

and common division of branches.

Make sure all your branches are always available

Like a lot of this document, this should probably should go without saying but experience has taught
me that it's not always obvious to people. It's a good idea to physically split up different branches into
different directories or directory trees on your FTP or web site. Linux accomplishes this by having
kernels in a v2.2 and a v2.3 subdirectory where it is immediately obvious (after you know their
version numbering scheme) which directory is for the most recent stable and the current development
releases. Debian accomplishes this by naming all their distribution with names (i.e. woody, potato,
etc.) and then changing symlinks named "stable," "unstable" and "frozen" to point to which ever
distribution (by name) is in whatever stage. Both methods work and there are others. In any case, it is
important that different branches are always available, are accessible from consistent locations, and
that different branches are clearly distinguished from each other so your users know exactly what
they want and where to get it.

3.4. Other Project Management issues

There are more issues surrounding interaction with developers in a free software project that I can not touch
on in great detail in a HOWTO of this size and scope. Please don't hesitate to contact me if you see any major
omissions.

Other smaller issues that are worth mentioning are:

3.4.1. Freezing

For those projects that choose to adopt a split development model (Section 3.3), freezing is a concept that is
worth becoming familiar with.

Freezes come in two major forms. A "feature freeze" is a period when no significant functionality is added to
a program. It is a period where established functionality (even skeletons of barely working functionality) can
be improved and perfected. It is a period where bugs are fixed. This type of freeze is usually applied some
period (a month or two) before a release. It is easy to push a release back as you wait for "one more
feature" and a freeze helps to avoid this situation by drawing the much needed line in the sand. It gives
developers room they need to get a program ready for release.

The second type of freeze is a "code freeze" which is much more like a released piece of software. Once a
piece of software has entered a "code freeze," all changes to the code are discouraged and only changes that
fix known bugs are permitted. This type of freeze usually follows a "feature freeze" and directly precedes a
release. Most released software is in what could be interpreted as a sort of high level "code freeze."

Even if you never choose to appoint a release manager (Section 3.1.1.2), you will have an easier time
justifying the rejection or postponement of patches (Section 3.2) before a release with a publicly stated freeze
in effect.

Free Software Project Management HOWTO

3.4. Other Project Management issues 20

3.5. Forks

I wasn't sure about how I would deal with forking in this document (or if I would deal with forking at all). A
fork is when a group of developers takes code from a free software project and actually starts a brand new
free software project with it. The most famous example of a fork was between Emacs and XEmacs. Both
emacsen are based on an identical code−base but for technical, political, and philosophical reasons,
development was split into two projects which now compete with each other.

The short version of the fork section is, don't do them. Forks force developers to choose one project to work
with, cause nasty political divisions, and redundancy of work. Luckily, usually the threat of the fork is
enough to scare the maintainer or maintainers of a project into changing the way they run their project.

In his chapter on "The Open Source Process," Karl Fogel describes how to do a fork if you absolutely must.
If you have determined that is absolutely necessary and that the differences between you and the people
threatening to fork are absolutely unresolvable, I recommend Fogel's book as a good place to start.

Free Software Project Management HOWTO

3.5. Forks 21

4. Maintaining a Project: Interacting with Users
If you've worked your way up to here, congratulations, you are nearing the end of this document. This final
section describes some of the situations in which you, in your capacity as project maintainer, will be
interacting with users. It gives some suggestions on how these situations might be handled effectively.

Interacting with users is difficult. In our discussion of interaction with developers, the underlying assumption
is that in a free software project, a project maintainer must constantly strive to attract and keep developers
who can easily leave at any time.

Users in the free software community are different than developers and are also different than users in the
world of proprietary software and they should be treated differently than either group. Some ways in which
the groups differ significantly follow:

The lines between users and developers are blurred in ways that is totally foreign to any proprietary
development model. Your users are often your developers and vice versa.

•

In the free software world, you are often your users' only choice. Because there is such an emphasis
on not replicating the work of others in the free software community and because the element of
competition present in the propriety software model is absent (or at least in an extremely different
form) in the free software development model, you will probably be the only project that does what
you do (or at least the only one that does what you do in the way that you do it). This means your
responsiveness to your users is even more important than in the proprietary software world.

•

In an almost paradoxical situation, free software projects have less immediate or dire consequences
for ignoring their users altogether. It is also often easier to do. Because you don't usually need to
compete with another product, chances are good that you will not be scrambling to gain the features
of your competitor's newest program. This means that your development process will have to be
directed either internally, by a commitment to your users, or through both.

•

Trying to tackle this unique situation can only be done indirectly. Developers and maintainers need to listen
to users and to try and be as responsive as possible. A solid knowledge of the situation recounted above is any
free software developer's best tool for shifting his development or leadership style to fit the unique process of
free software project management. This chapters will try and introduce some of the more difficult or
important points in any projects interactions with users and give some hints on how to tackle these.

4.1. Testing and Testers

In addition to your users being your developers, they are also (and perhaps more commonly) your testers.
Before I get flamed, I should rephrase my sentence: some of your users (those who explicityly volunteer) are
your testers.

It is important that this distinction be made early on because not all of your users want to be testers. Many
users want to use stable software and don't care if they don't have the newest, greatest software with the
latest, greatest features. These users except a stable, tested piece of software without major or obvious bugs
and will be angry if they find themselves testing. This is yet another way in which a split development model
(as mentioned in Section 3.3) might come in handy.

"Managing Projects the Open Source Way" describes what a good test should look for:

4. Maintaining a Project: Interacting with Users 22

http://news.linuxprogramming.com/news_story.php3?ltsn=2000-10-31-001-05-CD

Boundary conditions

Maximum buffer lengths, data conversions, upper/lower boundary limits, and so on.

Inappropriate behavior

Its a good idea to find out what a program will do if a user hands it a value it isn't expecting, hits the
wrong button, etc. Ask yourself a bunch of "what if" questions and think of anything that might fail
or might go wrong and find out what your program would do in those cases.

Graceful failure

The answer to a number of the "what if" questions above is probably "failure" which is often the only
answer. Now make sure that it happens nicely. Make sure that when it crashes, there is some
indication of why it crashed or failed so that the user or developer understands whats going on.

Standards conformance

If possible, make sure your programs conforms to standards. If it's interactive, don't be too creative
with interfaces. If it is non−interactive, make sure it communicates over appropriate and established
channels with other programs and with the rest of the system.

4.1.1. Automated testing

For many programs, many common mistakes can be caught by automated means. Automated tests tend to be
pretty good at catching errors that you've run into several times before or the things you just forget. They are
not very good at finding errors, even major ones, that are totally unforeseen.

CVS comes with a bourne shell script called sanity.sh that is worth looking at. Debian uses a program called
lintian that checks Debian packages for all of the most common errors. While use of these scripts may not be
helpful, there is a host of other sanity checking software on the net that may be applicable (feel free to email
me any recommendations). None of these will create a bug−free release but they will avoid at least some
major oversights. Finally, if your programs become a long term endeavor, you will find that there are certain
errors that you tend to make over and over. Start a collection of scripts that check for these errors to help keep
them out of future releases.

4.1.2. Testing by testers

For any program that depends on user interactivity, many bugs will only be uncovered through testing by
users actually clicking the keys and pressing the mouse buttons. For this you need testers and as many as
possible.

The most difficult part of testing is finding testers. It's usually a good tactic to post a message to a relevant
mailing list or news group announcing a specific proposed release date and outlining the functionality of your
program. If you put some time into the announcement, you are sure to get a few responses.

The second most difficult part of testing is keeping your testers and keeping them actively involved in the
testing process. Fortunately, there are some tried and true tactics that can applied towards this end:

Free Software Project Management HOWTO

4.1.1. Automated testing 23

Make things simple for your testers

Your testers are doing you a favor so make it as easy as possible for them. This means that you
should be careful to package your software in a way that is easy to find, unpack, install, and uninstall.
This also means you should explain what you are looking for to each tester and make the means for
reporting bugs simple and well established. The key is to provide as much structure as possible to
make your testers' jobs easy and to maintain as much flexibility as possible for those that want to do
things a little differently.

Be responsive to your testers

When your testers submit bugs, respond to them and respond quickly. Even if you are only
responding to tell them that the bug has already been fixed, quick and consistent responses make
them feel like their work is heard, important, and appreciated.

Thank your testers

Thank them personally each time they send you patch. Thank them publicly in the documentation
and the about section of your program. You appreciate your testers and your program would not be
possible without their help. Make sure they know it. Publicly, pat them on the back to make sure the
rest of the world knows it too. It will be appreciated more than you expected.

4.2. Setting up Support Infrastructure

While testing is important, the large part of your interactions and responsibility to your users falls under the
category of support. The best way to make sure your users are adequately supported in using your program is
to set up a good infrastructure for this purpose so that your developers and users help each other and less of
the burden falls on you. This way, people will also get quicker and better responses to their questions. This
infrastructure comes in several major forms:

4.2.1. Documentation

It should not come as any surprise that the key element to any support infrastructure is good documentation.
This topic was largely covered in Section 2.5 and will not be repeated here.

4.2.2. Mailing lists

Aside from documentation, effective mailing lists will be your greatest tool in providing user support.
Running a mailing list well is more complicated than installing mailing list software onto a machine.

4.2.2.1. Separate lists

A good idea is too separate your user and development mailing lists (perhaps into project−user@host and
project−devel@host) and enforce the division. If people post a development question onto −user, politely ask
them to repost it onto −devel and vise versa. Subscribe yourself to both groups and encourage all primarily

Free Software Project Management HOWTO

4.2. Setting up Support Infrastructure 24

developers to do the same.

This system provides so that no one person is stuck doing all of the support work and works so that users
learn more about the program, they can help newer users with their questions.

4.2.2.2. Choose mailing list software well

Please don't make the selection of mailing list software impulsively. Please consider easy accessibility by
users without a lot of technical experience so you want to be as easy as possible. Web accessibility to an
archive of the list is also important.

The two biggest free software mailing list programs are majordomo and GNU Mailman. A long time
advocate of majordomo, I would now recommend any project choose GNU Mailman. It fulfills the criteria
listed above and makes it easier. It provides a good mailing list program for a free software project maintainer
as opposed to a good mailing list application for a mailing list administrator.

There are other things you want to take into consideration in setting up your list. If it is possible to gate your
mailing lists to USENET and provide it in digest form as well as making them accessible on the web, you
will please some users and work to make the support infrastructure slightly more accessible.

4.2.3. Other support ideas

A mailing list and accessible documentation are far from all you can do to set up good user support
infrastructure. Be creative. If you stumble across something that works well, email me and I'll include it here.

4.2.3.1. Make your self accessible

You can not list too few methods to reach you. If you hang out in an IRC channel, don't hesitate to list it in
your projects documentation. List email and snailmail addresses, and ways to reach you via ICQ, AIM, or
Jabber if they apply.

4.2.3.2. Bug management software

For many large software projects, use of bug management software is essential to keep track of which bugs
have been fixed, which bugs have not been fixed, and which bugs are being fixed by which people. Debian
uses the Debian Bug Tracking System (BTS) although it may not be best choice for every project (it seems to
currently be buckling under its own weight) As well as a damn good web browser, the mozilla project has
spawned a sub−project resulting in a bug tracking system called bugzilla which has become extremely
possible and which I like a lot.

These systems (and others like them) can be unwieldy so developers should be careful to not spend more time
on the bug tracking system than on the bugs or the projects themselves. If a project continues to grow, use of
a bug tracking system can provide an easy standard avenue for users and testers to report bugs and for
developers and maintainers to fix them and track them in an orderly fashion.

Free Software Project Management HOWTO

4.2.2. Mailing lists 25

http://www.greatcircle.com/majordomo/
http://www.list.org/
http://bugs.debian.org
http://www.mozilla.org/projects/bugzilla/

4.3. Releasing Your Program

As mentioned earlier in the HOWTO, the first rule of releasing is, release something useful. Non−working or
not−useful software will not attract anyone to your project. People will be turned off of your project and will
be likely to simply gloss over it next time they see a new version announced. Half−working software, if
useful, will intrigue people, whet their appetites for versions to come, and encourage them to join the
development process.

4.3.1. When to release

Making the decision to release your software for the first time is an incredibly important and incredibly
stressful decision. But it needs to done. My advice is to try and make something that is complete enough to be
usable and incomplete enough to allow for flexibility and room for imagination by your future developers. It's
not an easy decision. Ask for help on a local Linux User Group mailing list or from a group of developer
friends.

One tactic is to first do an "alpha" or "beta" release as described below in Section 4.3.3. However, most of the
guidelines described above still apply.

When you feel in your gut that it is time and you feel you've weighed the situation well several times, cross
your fingers and take the plunge.

After you've released for the first time, knowing when to release becomes less stressful, but just as difficult to
gauge. I like the criteria offered by Robert Krawitz in his article, "Free Software Project Management" for
maintaining a good release cycle. He recommends that you ask yourself, "does this release..."

Contain sufficient new functionality or bug fixes to be worth the effort. •
Be spaced sufficiently far apart to allow the user time to work with the latest release. •
Be sufficiently functional so that the user can get work done (quality). •

If the answer is yes to all of these questions, its probably time for a release. If in doubt, remember that asking
for advice can't hurt.

4.3.2. How to release

If you've followed the guidelines described in this HOWTO up until this point, the mechanics of doing a
release are going to be the easy part of releasing. If you have set up consistent distribution locations and the
other infrastructure described in the preceding sections, releasing should be as simple as building the
package, checking it once over, and uploading it into the appropriate place and then making your website
reflect the change.

4.3.3. Alpha, beta, and development releases

When contemplating releases, it worth considering the fact that not every release needs to be a full numbered
release. Software users are accustomed to pre−releases but you must be careful to label these releases
accurately or they will cause more problems then they are worth.

Free Software Project Management HOWTO

4.3. Releasing Your Program 26

http://www.advogato.org/article/196.html

The observation is often made that many free software developers seem to be confused about the release
cycle. "Managing Projects the Open Source Way" suggests that you memorize the phrase, "Alpha is not Beta.
Beta is not Release" and I'd agree that tis is a probably a good idea.

alpha releases

Alpha software is feature−complete but sometimes only partially functional.

Alpha releases are expected to be unstable, perhaps a little unsafe, but definitely usable. They
can have known bugs and kinks that have yet to be worked out. Before releasing an alpha, be sure to
keep in mind that alpha releases are still releases and people are not going to be expecting a nightly
build from the CVS source. An alpha should work and have minimal testing and bug fixing already
finished.

beta releases

Beta software is feature−complete and functional, but is in the testing cycle and still has a few bugs
left to be ironed out.

Beta releases are general expected to be usable and slightly unstable, although definitely not
unsafe. Beta releases usually preclude a full release by under a month. They can contain small known
bugs but no major ones. All major functionality should be fully implemented although the exact
mechanics can still be worked out. Beta releases are great tool to whet the appetites of potential users
by giving them a very realistic view of where your project is going to be in the very near future and
can help keep interest by giving people something.

development releases

"Development release" is much a more vague term than "alpha" or "beta". I usually choose to reserve
the term for discussion of a development branch although there are other ways to use the term. So
many in fact, that I feel the term has been cheapened. The popular window manager
Enlightenment has released nothing but development releases. Most often, the term is used to
describe releases that are not even alpha or beta and if I were to release a pre−alpha version of a piece
of software in order to keep interest in my project alive, this is probably how I would have to label it.

4.4. Announcing Your Project

Well, you've done it. You've (at least for the purposes of this HOWTO) designed, built, and released your
free software project. All that is left is for you to tell the world so they know to come and try it out and
hopefully jump on board with development. If everything is in order as described above, this will be a quick
and painless process. A quick announcement is all that it takes to put yourself on the free software
community's radar screen.

4.4.1. Mailing lists and USENET

Email is still the way that most people on the Internet get their information. Its a good idea to send a message
announcing your program to any relevant mailing list you know of and any relevant USENET discussion
group. Karl Fogel recommends that use you simple subject describing the fact that the message is an

Free Software Project Management HOWTO

4.4. Announcing Your Project 27

http://news.linuxprogramming.com/news_story.php3?ltsn=2000-10-31-001-05-CD
http://www.enlightenment.org

announcement, the name of the program, the version, and a half−line long description of its functionality.
This way, any interested user or developer will be immediately attracted to your announcement. Fogel's
example looks like:

Subject: ANN: aub 1.0, a program to assemble USENET binaries

The rest of the email should describe the programs functionality quickly and concisely in no more than two
paragraphs and should provide links to the projects webpage and direct links to downloads for those that want
to try it right away.

You should repeat this announcement process consistently in the same locations for each subsequent release.

4.4.2. freshmeat.net

Mentioned earlier in Section 2.1.2.1, in today's free software community, announcements of your project on
freshmeat are almost more important than announcements on mailing lists.

Visit the freshmeat.net website or their submit project page to post your project onto their site and into their
database. In addition to a large website, freshmeat provides a daily newsletter that highlights all the days
releases and reaches a huge audience (I personally skim it every night for any interesting new releases).

Free Software Project Management HOWTO

4.4.2. freshmeat.net 28

http://freshmeat.net
http://freshmeat.net/add-project/

Bibliography

Bibliography 29

Printed Books

Karl Fogel, Open Source Development with CVS, Coriolois Open Press, 1999, 1−57610−490−7.

Fogel's "guide to using CVS in the free software world" is much more than its subitle. In the publisher's own
words: "Open Source Development with CVS is one of the first books available that teaches you development
and implementation of Open Source software." It also includes the best reference and tutorial to CVS I have
ever seen. It is the book that was so good that it prompted me to write this HOWTO because I thought the
role it tried to serve was so important and useful. Please check it or buy it if you can and are seriously
interested in running a free software project.

Lawrence Lessig, Code and Other Laws of Cyberspace, Basic Books, 2000, 0−465−03913−8.

While it only briefly talks about free software (and does it by tiptoeing around the free software/open source
issue with the spineless use of the term "open code" that only a laywer could coin), Lessig's book is brilliant.
Written by a lawyer, it talks about how regulation on the Internet is not done with law, but with the code
itself and how the nature of the code will determine the nature of future freedoms. In addition to being a
quick and enjoyable read, it gives some cool history and describes how we need free software in a way more
powerfully than anything I've read outside of RMS's "Right to Read."

Eric Raymond, The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary, O'Reilly, 1999, 1−56592−724−9.

Although I have to honestly say that I am not the ESR fan that I used to be, this book proved invaluable in
getting me where I am today. The essay that gives the book its title does a good job of sketching the free
software process and does an an amazing job of making an argument for free software/open source
development as a road to better software. The rest of the book has other of ESR's articles, which for the most
part are posted on his website. Still, it's nice thing to own in hard copy and something that every free
software/open source hacker should read.

Printed Books 30

http://www.gnu.org/philosophy/right-to-read.html

Web−Accessable Resources

Montey Manley, Managing Projects the Open Source Way, Linux Programming, Oct 31, 2000.

In one of the better articles on the subject that I've read, Monty sums up some of the major points I touch on
including: starting a project, testing, documenation, organizing a team and leadership, and several other
topics. While more opiniated that I try to be, I think its an important article that I found very helpful in
writing this HOWTO. I've tried to cite him in the places where I borrowed from him most.

I have problems much of this piece and I recommend you read [KRAWITZ] at the same time you read
Monty's article for a good critique.

Richard Gabriel, The Rise of "Worse is Better".

A well written article although I think the title may have confused as many people as the rest of the essay
helped. It offers a good description of how to design programs that will succeed and stay maintainable as they
grow.

Web−Accessable Resources 31

http://news.linuxprogramming.com/news_story.php3?ltsn=2000-10-31-001-05-CD
http://www.linuxprogramming.com
http://www.jwz.org/doc/worse-is-better.html

Advogato Articles

Stephen Hindle, 'Best Practices' for Open Source?, Advogato, March 21, 2001.

Touching mostly on programming practice (as most articles on the subject usually do), the article talks a little
about project managment ("Use it!") and a bit about communication within a free software project.

Bram Cohen, http://www.advogato.org/article/258.htmlHow to Write Maintainable Code, Advogato, March
15, 2001.

This article touches upon the "writing maintainable code" discussion that I try hard to avoid in my HOWTO.
It's one of the better (and most diplomatic) articles on the subject that I've found.

Robert Krawitz, Free Source Project Management, Advogato, November 4, 2000.

This article made me happy because it challenged many of the problems that I had with Monty's article on
LinuxProgramming. The author argues that Monty calls simply for the application of old (proprietary
software) project management techniques in free software projects instead of working to come up with
something new. I found his article to be extremely well thought out and I think it's an essential read for any
free software project manager.

Lalo Martins, Ask the Advogatos: why do Free Software projects fail?, Advogato, July 20, 2000.

While the article is little more than a question, reading the answers to this question offered by advogato's
readers can help. In a lot of ways, this HOWTO acts as my answer to the questions posed in this article but
there are others, many of which might take issue with whats is in this HOWTO. It's worth checking out.

David Burley, In−Roads to Free Software Development, Advogato, June 14, 2000.

This document was written as a response to another advogato article. Although not about running a project,
this describes some of the ways that you can get started with free software development without starting a
project. I think this is an important article. If you are interested in becoming involved with free software, this
article showcases some of the ways that you can do this without actually starting a project (something that I
hope this HOWTO has demonstrated is not to be taken lightly).

Jacob Moorman, http://www.advogato.org/article/72.htmlImportance of Non−Developer Supporters in Free
Software, Advogato, April 16, 2000.

Moorman's is a short article but it brings up some good points. The comment reminding developers to thank
their testers and end−users is invaluable and oft−forgotten.

Leslie Orchard, On Naming an Open Source Project, Advogato, April 12, 2000.

Advogato Articles 32

http://www.advogato.org/article/262.html
http://www.advogato.org
http://www.advogato.org/article/258.html
http://www.advogato.org
http://www.advogato.org/article/196.html
http://www.advogato.org
http://www.linuxprogramming.com
http://www.advogato.org/article/128.html
http://www.advogato.org
http://www.advogato.org/article/107.html
http://www.advogato.org
http://www.advogato.org/article/72.html
http://www.advogato.org/article/72.html
http://www.advogato.org
http://www.advogato.org/article/67.html
http://www.advogato.org

I didn't even have a section on project naming in this HOWTO (See Section 2.2) until Leslie Orchard's article
reminded me of it. Thanks to Leslie for writing this article!

David Allen, Version Numbering Madness, Advogato, Februrary 28, 2000.

In this article, David Allen challengs the whole "Major.Minor.Patch" version numbering scheme. Its good to
read this as you read Section 2.4. I liked the article and it describes some of the projects that I bring up in my
discussion of verion numbering.

Free Software Project Management HOWTO

Advogato Articles 33

http://www.advogato.org/article/40.html
http://www.advogato.org

A. GNU Free Documentation License

A. GNU Free Documentation License 34

A.1. 0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

A.1. 0. PREAMBLE 35

A.2. 1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copyright holder saying
it can be distributed under the terms of this License. The "Document", below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front−matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (For example, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front−Cover Texts or Back−Cover
Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine−readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup has been designed to thwart or discourage subsequent modification by
readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard−conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine−generated HTML produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, "Title Page" means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

A.2. 1. APPLICABILITY AND DEFINITIONS 36

#FDL-DOCUMENT
#FDL-SECONDARY
#FDL-DOCUMENT
#FDL-DOCUMENT
#FDL-DOCUMENT

A.3. 2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

A.3. 2. VERBATIM COPYING 37

#FDL-DOCUMENT

A.4. 3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Document's license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front−Cover Texts on the front cover, and Back−Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front cover must present the full
title with all words of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine−readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly−accessible computer−network location containing a complete Transparent copy of the
Document, free of added material, which the general network−using public has access to download
anonymously at no charge using public−standard network protocols. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

A.4. 3. COPYING IN QUANTITY 38

#FDL-DOCUMENT
#FDL-COVER-TEXTS
#FDL-DOCUMENT
#FDL-TRANSPARENT
#FDL-DOCUMENT
#FDL-TRANSPARENT
#FDL-DOCUMENT

A.5. 4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

•
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

•
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

•
C. State on the Title Page the name of the publisher of the Modified Version, as the publisher.

•
D. Preserve all the copyright notices of the Document.

•
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

•
F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

•
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document's license notice.

•
H. Include an unaltered copy of this License.

•
I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section entitled "History" in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

•
J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the Document for
previous versions it was based on. These may be placed in the "History" section. You may omit a
network location for a work that was published at least four years before the Document itself, or if

A.5. 4. MODIFICATIONS 39

#FDL-MODIFIED
#FDL-DOCUMENT
#FDL-TITLE-PAGE
#FDL-DOCUMENT
#FDL-TITLE-PAGE
#FDL-MODIFIED
#FDL-DOCUMENT
#FDL-TITLE-PAGE
#FDL-MODIFIED
#FDL-DOCUMENT
#FDL-MODIFIED
#FDL-INVARIANT
#FDL-COVER-TEXTS
#FDL-DOCUMENT
#FDL-MODIFIED
#FDL-TITLE-PAGE
#FDL-DOCUMENT
#FDL-DOCUMENT
#FDL-TRANSPARENT

the original publisher of the version it refers to gives permission.

•
K. In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

•
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

•
M. Delete any section entitled "Endorsements". Such a section may not be included in the Modified
Version.

•
N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant
Section.

If the Modified Version includes new front−matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or all of
these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version's license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties−−for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front−Cover Text, and a passage of up to 25 words as a
Back−Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front−Cover Text and one of Back−Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version .

Free Software Project Management HOWTO

A.5. 4. MODIFICATIONS 40

#FDL-INVARIANT
#FDL-DOCUMENT
#FDL-MODIFIED
#FDL-MODIFIED
#FDL-INVARIANT
#FDL-INVARIANT
#FDL-MODIFIED
#FDL-SECONDARY
#FDL-SECONDARY
#FDL-INVARIANT
#FDL-MODIFIED
#FDL-COVER-TEXTS
#FDL-COVER-TEXTS
#FDL-COVER-TEXTS
#FDL-MODIFIED
#FDL-DOCUMENT
#FDL-DOCUMENT
#FDL-MODIFIED

A.6. 5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents,
forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any
sections entitled "Dedications". You must delete all sections entitled "Endorsements."

A.6. 5. COMBINING DOCUMENTS 41

#FDL-DOCUMENT
#FDL-INVARIANT
#FDL-INVARIANT
#FDL-INVARIANT
#FDL-INVARIANT

A.7. 6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and dispbibute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

A.7. 6. COLLECTIONS OF DOCUMENTS 42

#FDL-DOCUMENT

A.8. 7. AGGREGATION WITH INDEPENDENT
WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an
"aggregate", and this License does not apply to the other self−contained works thus compiled with the
Document , on account of their being thus compiled, if they are not themselves derivative works of the
Document. If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on
covers that surround only the Document within the aggregate. Otherwise they must appear on covers around
the whole aggregate.

A.8. 7. AGGREGATION WITH INDEPENDENT WORKS 43

#FDL-DOCUMENT
#FDL-MODIFIED
#FDL-COVER-TEXTS

A.9. 8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License provided that you
also include the original English version of this License. In case of a disagreement between the translation
and the original English version of this License, the original English version will prevail.

A.9. 8. TRANSLATION 44

#FDL-DOCUMENT
#FDL-INVARIANT

A.10. 9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

A.10. 9. TERMINATION 45

#FDL-DOCUMENT

A.11. 10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

A.11. 10. FUTURE REVISIONS OF THIS LICENSE 46

http://www.gnu.org/fsf/fsf.html
http://www.gnu.org/copyleft
#FDL-DOCUMENT

A.12. Addendum
To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the
Front−Cover Texts being LIST, and with the Back−Cover Texts being LIST. A copy of the
license is included in the section entitled "GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are
invariant. If you have no Front−Cover Texts, write "no Front−Cover Texts" instead of "Front−Cover Texts
being LIST"; likewise for Back−Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their
use in free software.

A.12. Addendum 47

#FDL-INVARIANT
#FDL-COVER-TEXTS
#FDL-COVER-TEXTS
#FDL-INVARIANT
#FDL-COVER-TEXTS
#FDL-COVER-TEXTS
http://www.gnu.org/copyleft/gpl.html

	Table of Contents
	1. Introduction
	1.1. Copyright Information
	1.2. Disclaimer
	1.3. New Versions
	1.4. Credits
	1.5. Feedback
	1.6. Translations

	2. Starting a Project
	2.1. Choosing a Project
	2.1.1. Identify and articulate your idea
	2.1.2. Evaluate your idea

	2.2. Naming your project
	2.3. Licensing your Software
	2.3.1. Choosing a license
	2.3.2. The mechanics of licensing
	2.3.3. Final license warning

	2.4. Choosing a Method of Version Numbering
	2.5. Documentation
	2.5.1. Man pages
	2.5.2. Command line accessible documentation
	2.5.3. Files users will expect
	2.5.4. Website
	2.5.5. Other documentation hints

	2.6. Other Presentation Issues
	2.6.1. Package formats
	2.6.2. Version control systems
	2.6.3. Useful tidbits and presentation hints

	3. Maintaining a Project: Interacting with Developers
	3.1. Delegating Work
	3.1.1. How to delegate

	3.2. Accepting and Rejecting Patches
	3.2.1. Technical judgment
	3.2.2. Rejecting patches

	3.3. Stable and Development Branches
	3.4. Other Project Management issues
	3.4.1. Freezing

	3.5. Forks

	4. Maintaining a Project: Interacting with Users
	4.1. Testing and Testers
	4.1.1. Automated testing
	4.1.2. Testing by testers

	4.2. Setting up Support Infrastructure
	4.2.1. Documentation
	4.2.2. Mailing lists
	4.2.3. Other support ideas

	4.3. Releasing Your Program
	4.3.1. When to release
	4.3.2. How to release
	4.3.3. Alpha, beta, and development releases

	4.4. Announcing Your Project
	4.4.1. Mailing lists and USENET
	4.4.2. freshmeat.net

	Bibliography
	Printed Books
	Web-Accessable Resources
	Advogato Articles
	A. GNU Free Documentation License
	A.1. 0. PREAMBLE
	A.2. 1. APPLICABILITY AND DEFINITIONS
	A.3. 2. VERBATIM COPYING
	A.4. 3. COPYING IN QUANTITY
	A.5. 4. MODIFICATIONS
	A.6. 5. COMBINING DOCUMENTS
	A.7. 6. COLLECTIONS OF DOCUMENTS
	A.8. 7. AGGREGATION WITH INDEPENDENT WORKS
	A.9. 8. TRANSLATION
	A.10. 9. TERMINATION
	A.11. 10. FUTURE REVISIONS OF THIS LICENSE
	A.12. Addendum

