
Wine Documentation

Wine Documentation

Wine User Guide

Wine User Guide

Table of Contents
1. Introduction ..1

1.1. What is Wine?...1
1.1.1. Windows and Linux...1
1.1.2. Emulation versus Native Linking...1

1.2. Wine Requirements and Features...2
1.2.1. System requirements..2
1.2.2. Wine capabilities..3

2. Getting Wine...1

2.1. The Many Forms of Wine...1
2.2. Getting Wine for a Debian System...1
2.3. Getting Wine for a Redhat System...2
2.4. Getting Wine for Other Distributions...3
2.5. Getting Wine Source Code from the FTP Archive...3
2.6. Getting Wine Source Code from CVS..4
2.7. Upgrading Wine with a Patch...5

3. Installing/compiling Wine ...7

3.1. WWN #52 Feature: Replacing Windows..7
3.1.1. Installation Overview...7
3.1.2. The Registry...8
3.1.3. Directory Structure...8
3.1.4. System DLLs...9

3.2. Installing Wine Without Windows..10
3.3. Dealing With FAT/VFAT Partitions..12

3.3.1. Introduction..12
3.3.2. Running Wine as root..13
3.3.3. Mounting FAT filesystems...13
3.3.4. Shadowing FAT filesystems...15

3.4. SCSI Support..16
3.4.1. Windows requirements...17
3.4.2. LINUX requirements:..17
3.4.3. General Information...18

5

3.4.4. NOTES/BUGS...19

4. Configuring Wine...20

4.1. General Configuration...20
4.1.1. The Wine Config File...20
4.1.2. How Do I Make One?..20

4.1.2.1. The [Drive X] Section...21
4.1.2.2. The [wine] Section..24
4.1.2.3. Introduction To DLL Sections..25

4.1.2.3.1. Windows DLL Pairs...25
4.1.2.3.2. Different Forms Of DLL’s...26

4.1.2.4. The [DllDefaults] Section...27
4.1.2.5. The [DllPairs] Section...27
4.1.2.6. The [DllOverrides] Section...27
4.1.2.7. The [options] Section..29
4.1.2.8. The [fonts] Section..30
4.1.2.9. The [serialports], [parallelports], [spooler], and [ports] Sections

31
4.1.2.10. The [spy], [Registry], [tweak.layout], and [programs] Sections

33
4.1.2.11. The [WinMM] Section..34

4.1.3. Where Do I Put It?...35
4.1.4. What If It Doesn’t Work?...35

4.2. Win95/98 Look...36
4.3. Configuring the x11drv Driver..37

4.3.1. x11drv modes of operation..37
4.3.2. The [x11drv] section..38

4.4. The Registry..41
4.4.1. Registry structure...41
4.4.2. Using a Windows registry..42
4.4.3. Wine registry data files...42
4.4.4. System administration..43
4.4.5. The default registry..44
4.4.6. The [registry] section...44

6

4.5. Drive labels and serial numbers with wine...46
4.5.1. What’s Supported?...46
4.5.2. How To Set Up?...46
4.5.3. EXAMPLES..47
4.5.4. Todo / Open Issues...47

4.6. Dll Overrides...48
4.6.1. DLL types..48
4.6.2. The [DllDefaults] section...49
4.6.3. The [DllPairs] section..49
4.6.4. The [DllOverrides] section..49

4.7. Keyboard...54
4.8. Dealing with Fonts..57

4.8.1. Fonts...57
4.8.1.1. How To Convert Windows Fonts..58
4.8.1.2. How To Add Font Aliases To~/.wine/config59
4.8.1.3. How To Manage Cached Font Metrics.....................................61
4.8.1.4. Too Small Or Too Large Fonts..62
4.8.1.5. "FONT_Init: failed to load ..." Messages On Startup...............62

4.8.2. Setting up a TrueType Font Server..62
4.9. Printing in Wine..65

4.9.1. Printing...65
4.9.1.1. External printer drivers...65
4.9.1.2. Builtin Wine PostScript driver..66
4.9.1.3. Spooling..66

4.9.2. The Wine PostScript Driver...66
4.9.2.1. Installation...67

4.9.2.1.1. Installation of CUPS printers...67
4.9.2.1.2. Installation of LPR /etc/printcap based printers.............67
4.9.2.1.3. Installation of other printers...67
4.9.2.1.4. Required Configuration for all printertypes...................68

4.9.2.2. TODO / Bugs..70

5. Running Wine...71

5.1. How to run Wine...71

7

5.2. Command-Line Options..72
5.2.1. --debugmsg [channels]...73
5.2.2. --dll...75
5.2.3. --dosver..75
5.2.4. --help..75
5.2.5. --managed..75
5.2.6. --version...75
5.2.7. --winver..75

6. Finding and Reporting Bugs...76

6.1. How To Report A Bug..76
6.1.1. The Easy Way..76
6.1.2. The Hard Way..76
6.1.3. Questions and comments...78

8

Chapter 1. Introduction

1.1. What is Wine?
Written by John R. Sheets <jsheets@codeweavers.com >

1.1.1. Windows and Linux
Many people have faced the frustration of owning software that won’t run on their
computer. With the recent popularity of Linux, this is happening more and more often
because of differing operating systems. Your Windows software won’t run on Linux,
and your Linux software won’t run in Windows.

A common solution to this problem is to install both operating systems on the same
computer, as a “dual boot” system. If you want to write a document in MS Word, you
can boot up in Windows; if you want to run the GnuCash, the GNOME financial
application, you can shut down your Windows session and reboot into Linux. The
problem with this is that you can’t do both at the same time. Each time you switch back
and forth between MS Word and GnuCash, you have to reboot again. This can get
tiresome quickly.

Life would be so much easier if you could run all your applications on the same
system, regardless of whether they are written for Windows or for Linux. On Windows,
this isn’t really possible.1 However, Wine makes it possible to run native Windows
applications alongside native Linux applications on a Linux (or Solaris) system. You
can share desktop space between MS Word and GnuCash, overlapping their windows,
iconizing them, and even running them from the same launcher.

1.1.2. Emulation versus Native Linking
Wine is a UNIX implementation of the win32 libraries, written from scratch by

1

Chapter 1. Introduction

hundreds of volunteer developers and released under an open source license. Anyone
can download and read through the source code, and fix bugs that arise. The Wine
community is full of richly talented programmers who have spent thousands of hours of
personal time on improving Wine so that it works well with the win32Applications
Programming Interface(API), and keeps pace with new developments from Microsoft.

Wine can run applications in two discrete ways: as pre-compiled Windows binaries, or
as natively compiled X11 (X Window System) applications. The former method uses
emulation to connect a Windows application to the Wine libraries. You can run your
Windows application directly with the emulator, by installing through Wine or by
simply copying the Windows executables onto your Linux system.

The other way to run Windows applications with Wine requires that you have the
source code for the application. Instead of compiling it with native Windows compilers,
you can compile it with a native Linux compiler --gccfor example -- and link in the
Wine Libraries as you would with any other native UNIX application. These natively
linked applications are referred to as Winelib applications.

The Wine Users Guide will focus on running precompiled Windows applications using
the Wine emulator. The Winelib Users Guide
(http://wine.codeweavers.com/docs/winelib-user/) will cover Winelib applications.

1.2. Wine Requirements and Features
Written by Andreas Mohr <amohr@codeweavers.com >

1.2.1. System requirements
In order to run Wine, you need the following:

• a computer ;-) Wine: only PCs >= i386 are supported at the moment. Winelib: other
platforms might be supported, but can be tricky.

2

Chapter 1. Introduction

• a UNIX-like operating system such as Linux, *BSD, Solaris x86

• >= 16MB of RAM. Everything below is pretty much unusable. >= 64 MB is needed
for a "good" execution.

• an X11 window system (XFree86 etc.). Wine is prepared for other graphics display
drivers, but writing support is not too easy. The text console display driver is nearly
usable.

1.2.2. Wine capabilities
Now that you hopefully managed to fulfill the requirements mentioned above, we tell
you what Wine is able to do/support:

• Support for executing DOS, Win 3.x and Win9x/NT/Win2000 programs (most of
Win32’s controls are supported)

• Optional use of external vendor DLLs (e.g. original Windows DLLs)

• X11-based graphics display (remote display to any X terminal possible), text mode
console

• Desktop-in-a-box or mixable windows

• Pretty advanced DirectX support for games

• Good support for sound, alternative input devices

• Printing: supports native Win16 printer drivers, Internal PostScript driver

• Modems, serial devices are supported

• Winsock TCP/IP networking

• ASPI interface (SCSI) support for scanners, CD writers, ...

• Unicode support, relatively advanced language support

• Wine debugger and configurable trace logging messages

3

Chapter 1. Introduction

Notes
1. Technically, if you have two networked computers, one running Windows and the

other running Linux, and if you have some sort of X server software running on the
Windows system, you can export Linux applications onto the Windows system.
Unfortunately, most decent win32 X servers are commercial products, many of
which cost quite a lot. However, this doesn’t solve the problem if you only own one
computer system.

4

Chapter 2. Getting Wine

2.1. The Many Forms of Wine
The standard Wine distribution includes quite a few different executables, libraries, and
configuration files. All of these must be set up properly for Wine to work well. This
chapter will guide you through the necessary steps to get Wine installed on your
system.

If you are running a distribution of Linux that uses packages to keep track of installed
software, you may be in luck: A prepackaged version of Wine may already exist for
your system. The first three sections will tell you how to find the latest Wine packages
and get them installed. You should be careful, though, about mixing packages between
different distributions, and even from different versions of the same distribution. Often
a package will only work on the distribution it’s compiled for. We’ll coverDebian,
Redhat, andotherdistributions.

If you’re not lucky enough to have an available package for your operating system, or if
you’d prefer a newer version of Wine than already exists as a package, you may have to
download the Wine source code and compile it yourself on your own machine. Don’t
worry, it’s not too hard to do this, especially with the many helpful tools that come with
Wine. You don’t need any programming experience to compile and install Wine,
although it might be nice to have some minor UNIX administrative skill. We’ll cover
how to retrieve and compile the official source releases from theFTP archives, and also
how to get the cutting edge up-to-the-minute fresh Wine source code fromCVS
(Concurrent Versions System). Both processes of source code installation are similar,
and once you master one, you should have no trouble dealing with the other one.

Finally, you may someday need to know how to apply a source code patch to your
version of Wine. Perhaps you’ve uncovered a bug in Wine, reported it to the Wine
mailing list (mailto:wine-devel@winehq.com), and received a patch from a developer
to hopefully fix the bug. The last section in this chapter will show you how tosafely
apply the patchand revert it if the patch doesn’t work.

1

Chapter 2. Getting Wine

2.2. Getting Wine for a Debian System
In most cases on a Debian system, you can install Wine with a single command, as root:

apt-get install wine

apt-getwill connect to a Debian archive across the Internet (thus, you must be online),
then download the Wine package and install it on your system. End of story.

Of course, Debian’s pre-packaged version of Wine may not be the most recent release.
If you are running the stable version of Debian, you may be able to get a slightly newer
version of Wine by grabbing the package from the unstable distribution, although this
may be a little risky, depending on how far the unstable distribution has diverged from
the stable one. You can find a list of Wine binary packages for the various Debian
releases using the package search engine (http://cgi.debian.org/cgi-
bin/search_packages.pl?keywords=wine&searchon=names&version=all&release=all)
at www.debian.org (http://www.debian.org).

To install a package that’s not part of your distribution, you must usedpkg instead of
apt-get. Sincedpkg doesn’t download the file for you, you must do it yourself. Follow
the link on the package search engine to the desired package, then click on theGo To
Download Page button and follow the instructions. Save the file to your hard drive,
then rundpkg on it. For example, if you saved the file to your home directory, you
might perform the following actions to install it:

$ su -
<Type in root password>
cd /home/user
dpkg -i wine_0.0.20000109-3.deb

You may also want to install the wine-doc package, and if you are using Wine from the
2.3 distribution (Woody), the wine-utils package as well.

2

Chapter 2. Getting Wine

2.3. Getting Wine for a Redhat System
Redhat/RPM users can use rpmfind.net (http://rpmfind.net/linux/RPM/) to track down
available Wine RPM binaries. This page
(http://rpmfind.net/linux/RPM/WByName.html) contains a list of all rpmfind packages
that start with the letter "W", including a few Wine packages

2.4. Getting Wine for Other Distributions
The first place you should look if your system isn’t Debian or Redhat is the WineHQ
Download Page (http://www.winehq.com/download.html). This page lists many
assorted archives of binary (precompiled) Wine files.

Lycos FTPSearch (http://ftpsearch.lycos.com/?form=medium) is another useful
resource for tracking down miscellaneous distribution packages.

2.5. Getting Wine Source Code from the FTP
Archive

If the version of Wine you want does not exist in package form, you can download the
source code yourself and compile it on your machine. Although this might seem a little
intimidating at first if you’ve never done it, you’ll find that it’ll often go quite smoothly,
especially on the newer Linux distributions.

The safest way to grab the source is from one of the official FTP archives. An up to
date listing is in the ANNOUNCE (http://www.winehq.com/source/ANNOUNCE) file
in the Wine distribution (which you would have if you already downloaded it). Here is
a (possibly out of date) list of FTP servers carrying Wine:

• ftp://metalab.unc.edu/pub/Linux/ALPHA/wine/development/
(ftp://metalab.unc.edu/pub/Linux/ALPHA/wine/development/)

3

Chapter 2. Getting Wine

• ftp://tsx-11.mit.edu/pub/linux/ALPHA/Wine/development/
(ftp://tsx-11.mit.edu/pub/linux/ALPHA/Wine/development/)

• ftp://ftp.infomagic.com/pub/mirrors/linux/sunsite/ALPHA/wine/development/
(ftp://ftp.infomagic.com/pub/mirrors/linux/sunsite/ALPHA/wine/development/)

• ftp://orcus.progsoc.uts.edu.au/pub/Wine/development/
(ftp://orcus.progsoc.uts.edu.au/pub/Wine/development/)

The official releases are tagged by date with the format "Wine-YYYYMMDD.tar.gz".
Your best bet is to grab the latest one.

FIXME: Explain how to un-tar, compile, and install Wine from a tarball.

2.6. Getting Wine Source Code from CVS
The official web page for Wine CVS is http://www.winehq.com/dev.html
(http://www.winehq.com/dev.html).

First, you need to get a copy of the latest Wine sources using CVS. You can tell it where
to find the source tree by setting the CVSROOT environment variable. You also have to
log in anonymously to the wine CVS server. Inbash, it might look something like this:

$ export CVSROOT=:pserver:cvs@cvs.winehq.com:/home/wine
$ cvs login
Password: cvs
$ cvs checkout wine

That’ll pull down the entire Wine source tree from winehq.com and place it in the
current directory (actually in the ’wine’ subdirectory). CVS has a million command
line parameters, so there are many ways to pull down files, from anywhere in the
revision history. Later, you can grab just the updates:

$ cvs -dP update

4

Chapter 2. Getting Wine

cvs updateworks from inside the source tree. You don’t need the CVSROOT
environment variable to run it either. You just have to be inside the source tree. The-d
and-P options make sure your local Wine tree directory structure stays in sync with
the remote repository.

After you’ve made changes, you can create a patch withcvs diff -u, which sends output
to stdout (the-u controls the format of the patch). So, to create anmy_patch.diff

file, you would do this:

$ cvs diff -u > my_patch.diff

You can callcvs diff from anywhere in the tree (just likecvs update), and it will always
grab recursively from that point. You can also specify single files or subdirectories:

$ cvs diff -u dlls/winaspi > my_aspi_patch.diff

Experiment around a little. It’s fairly intuitive.

2.7. Upgrading Wine with a Patch
If you have the Wine source code, as opposed to a binary distribution, you have the
option of applying patches to the source tree to fix bugs and add experimental features.
Perhaps you’ve found a bug, reported it to the Wine mailing list
(mailto:wine-devel@winehq.com), and received a patch file to fix the bug. You can
apply the patch with thepatch command, which takes a streamed patch fromstdin :

$ cd wine
$ patch -p0 < ../patch_to_apply.diff

To remove the patch, use the-R option:

$ patch -p0 -R < ../patch_to_apply.diff

5

Chapter 2. Getting Wine

If you want to do a test run to see if the patch will apply successfully (e.g., if the patch
was created from an older or newer version of the tree), you can use the--dry-run
parameter to run the patch without writing to any files:

$ patch -p0 --dry-run < ../patch_to_apply.diff

patch is pretty smart about extracting patches from the middle of a file, so if you save
an email with an inlined patch to a file on your hard drive, you can invoke patch on it
without stripping out the email headers and other text.patch ignores everything that
doesn’t look like a patch.

FIXME: Go into more depth about the -p0 option...

6

Chapter 3. Installing/compiling Wine
How to install Wine...

3.1. WWN #52 Feature: Replacing Windows
Written by Ove Kåven <ovek@winehq.com >

3.1.1. Installation Overview
A Windows installation consists of many different parts.

• Registry. Many keys are supposed to exist and contain meaningful data, even in a
newly-installed Windows.

• Directory structure. Applications expect to find and/or install things in specific
predetermined locations. Most of these directories are expected to exist. But unlike
Unix directory structures, most of these locations are not hardcoded, and can be
queried via the Windows API and the registry. This places additional requirements
on a Wine installation.

• System DLLs. In Windows, these usually reside in thesystem (or system32)
directories. Some Windows applications check for their existence in these directories
before attempting to load them. While Wine is able to load its own internal DLLs
(.so files) when the application asks for a DLL, Wine does not simulate the
existence of nonexisting files.

While the users are of course free to set up everything themselves, the Wine team will
make the automated Wine installation script,tools/wineinstall , do everything we
find necessary to do; running the conventionalconfigure && make depend && make
&& make install cycle is thus not recommended, unless you know what you’re doing.
At the moment,tools/wineinstall is able to create a configuration file, install the
registry, and create the directory structure itself.

7

Chapter 3. Installing/compiling Wine

3.1.2. The Registry
The default registry is in the filewinedefault.reg . It contains directory paths, class
IDs, and more; it must be installed before mostINSTALL.EXE or SETUP.EXE

applications will work. The registry is covered in more detail in an earlier article.

3.1.3. Directory Structure
Here’s the fundamental layout that Windows applications and installers expect. Without
it, they seldom operate correctly.

C:\ Root directory of
primary disk
drive

Windows\ Windows
directory,
containing .INI
files, accessories,
etc

System\ Win3.x/95/98/ME di-
rectory for common DLLs
WinNT/2000 di-
rectory for com-
mon 16-bit DLLs

System32\ WinNT/2000
directory for
common 32-bit
DLLs

Start Menu\ Program
launcher
directory
structure

8

Chapter 3. Installing/compiling Wine

Programs\ Program
launcher links
(.LNK files) to
applications

Program Files\ Application
binaries (.EXE
and .DLL files)

Wine emulates drives by placing their virtual drive roots to user-configurable points in
the Unix filesystem, so it’s your choice whereC:’s root should be
(tools/wineinstall will even ask you). If you choose, say,/var/wine , as the root
of your virtual driveC, then you’d put this in your~/.wine/config :

[Drive C]
"Path" = "/var/wine"
"Type" = "hd"
"Label" = "MS-DOS"
"Filesystem" = "win95"

With this configuration, what windows apps think of as "c:\windows\system" would
map to/var/wine/windows/system in the UNIX filesystem. Note that you need to
specify"Filesystem" = "win95" , NOT "Filesystem" = "unix" , to make
Wine simulate a Windows-compatible (case-insensitive) filesystem, otherwise most
apps won’t work.

3.1.4. System DLLs
The Wine team has determined that it is necessary to create fake DLL files to trick
many applications that check for file existence to determine whether a particular feature
(such as Winsock and its TCP/IP networking) is available. If this is a problem for you,
you can create empty files in thesystem directory to make the application think it’s

9

Chapter 3. Installing/compiling Wine

there, and Wine’s built-in DLL will be loaded when the application actually asks for it.
(Unfortunately,tools/wineinstall does not create such empty files itself.)

Applications sometimes also try to inspect the version resources from the physical files
(for example, to determine the DirectX version). Empty files will not do in this case, it
is rather necessary to install files with complete version resources. This problem is
currently being worked on. In the meantime, you may still need to grab some real DLL
files to fool these apps with.

And there are of course DLLs that wine does not currently implement very well (or at
all). If you do not have a real Windows you can steal necessary DLLs from, you can
always get some from a DLL archive such as http://solo.abac.com/dllarchive/.

3.2. Installing Wine Without Windows
Written by James Juran <juran@cse.psu.edu >

(Extracted fromwine/documentation/no-windows)

A major goal of Wine is to allow users to run Windows programs without having to
install Windows on their machine. Wine implements the functionality of the main
DLLs usually provided with Windows. Therefore, once Wine is finished, you will not
need to have windows installed to use Wine.

Wine has already made enough progress that it may be possible to run your target
applications without Windows installed. If you want to try it, follow these steps:

1. Create emptyC:\windows , C:\windows\system , C:\windows\Start Menu ,
andC:\windows\Start Menu\Programs directories. Do not point Wine to a
Windows directory full of old installations and a messy registry. (Wine creates a
special registry in yourhome directory, in$HOME/.wine/*.reg . Perhaps you
have to remove these files).

2. Point[Drive C] in ~/.wine/config to where you wantC: to be. Refer to the
Wine man page for more information. Remember to use"Filesystem" =

10

Chapter 3. Installing/compiling Wine

"win95" !

3. Usetools/wineinstall to compile Wine and install the default registry. Or if
you prefer to do it yourself, compileprograms/regapi , and run:
programs/regapi/regapi setValue < winedefault.reg

4. Run and/or install your applications.

Because Wine is not yet complete, some programs will work better with native
Windows DLLs than with Wine’s replacements. Wine has been designed to make this
possible. Here are some tips by Juergen Schmied (and others) on how to proceed. This
assumes that yourC:\windows directory in the configuration file does not point to a
native Windows installation but is in a separate Unix file system. (For instance,
“C:\windows” is really subdirectory “windows” located in “/home/ego/wine/drives/c”).

• Run the application with--debugmsg +module,+file to find out which files
are needed. Copy the required DLLs one by one to theC:\windows\system

directory. Do not copy KERNEL/KERNEL32, GDI/GDI32, or USER/USER32.
These implement the core functionality of the Windows API, and the Wine internal
versions must be used.

• Edit the “[DllOverrides]” section of~/.wine/config to specify “native” before
“builtin” for the Windows DLLs you want to use. For more information about this,
see the Wine manpage.

• Note that some network DLLs are not needed even though Wine is looking for them.
The WindowsMPR.DLLcurrently does not work; you must use the internal
implementation.

• Copy SHELL/SHELL32 and COMDLG/COMDLG32 COMMCTRL/COMCTL32
only as pairs to your Wine directory (these DLLs are “clean” to use). Make sure you
have these specified in the “[DllPairs]” section of~/.wine/config .

• Be consistent: Use only DLLs from the same Windows version together.

• Putregedit.exe in theC:\windows directory. (Office 95 imports a*.reg file
when it runs with an empty registry, don’t know about Office 97).

11

Chapter 3. Installing/compiling Wine

• Also addwinhelp.exe andwinhlp32.exe if you want to be able to browse
through your programs’ help function.

3.3. Dealing With FAT/VFAT Partitions
Written by Steven Elliott <elliotsl@mindspring.com >

(Extracted fromwine/documentation/linux-fat-permissions)

This document describes how FAT and VFAT file system permissions work in Linux
with a focus on configuring them for Wine.

3.3.1. Introduction
Linux is able to access DOS and Windows file systems using either the FAT (older 8.3
DOS filesystems) or VFAT (newer Windows 95 or later long filename filesystems)
modules. Mounted FAT or VFAT filesystems provide the primary means for which
existing applications and their data are accessed through Wine for dual boot (Linux +
Windows) systems.

Wine maps mounted FAT filesystems, such as/c , to driver letters, such as “c:”, as
indicated by the~/.wine/config file. The following excerpt from a
~/.wine/config file does this:

[Drive C]
"Path" = "/c"
"Type" = "hd"

Although VFAT filesystems are preferable to FAT filesystems for their long filename
support the term “FAT” will be used throughout the remainder of this document to refer
to FAT filesystems and their derivatives. Also, “/c” will be used as the FAT mount point
in examples throughout this document.

12

Chapter 3. Installing/compiling Wine

Most modern Linux distributions either detect or allow existing FAT file systems to be
configured so that they can be mounted, in a location such as/c , either persistently (on
bootup) or on an as needed basis. In either case, by default, the permissions will
probably be configured so that they look like:

~>cd /c
/c> ls -l
-rwxr-xr-x 1 root root 91 Oct 10 17:58 autoexec.bat

-rwxr-xr-x 1 root root 245 Oct 10 17:58 config.sys

drwxr-xr-x 41 root root 16384 Dec 30 1998 windows

where all the files are owned by "root", are in the "root" group and are only writable by
"root" (755 permissions). This is restrictive in that it requires that Wine be run as root
in order for applications to be able to write to any part of the filesystem.

There are three major approaches to overcoming the restrictive permissions mentioned
in the previous paragraph:

1. Run Wine as root

2. Mount the FAT filesystem with less restrictive permissions

3. Shadow the FAT filesystem by completely or partially copying it

Each approach will be discussed in the following sections.

3.3.2. Running Wine as root
Running Wine as root is the easiest and most thorough way of giving applications that
Wine runs unrestricted access to FAT files systems. Running wine as root also allows
applications to do things unrelated to FAT filesystems, such as listening to ports that are
less than 1024. Running Wine as root is dangerous since there is no limit to what the
application can do to the system.

13

Chapter 3. Installing/compiling Wine

3.3.3. Mounting FAT filesystems
The FAT filesystem can be mounted with permissions less restrictive than the default.
This can be done by either changing the user that mounts the FAT filesystem or by
explicitly changing the permissions that the FAT filesystem is mounted with. The
permissions are inherited from the process that mounts the FAT filesystem. Since the
process that mounts the FAT filesystem is usually a startup script running as root the
FAT filesystem inherits root’s permissions. This results in the files on the FAT
filesystem having permissions similar to files created by root. For example:

~>whoami
root

~>touch root_file
~>ls -l root_file
-rw-r--r-- 1 root root 0 Dec 10 00:20 root_file

which matches the owner, group and permissions of files seen on the FAT filesystem
except for the missing ’x’s. The permissions on the FAT filesystem can be changed by
changing root’s umask (unset permissions bits). For example:

~>umount /c
~>umask
022

~>umask 073
~>mount /c
~>cd /c
/c> ls -l
-rwx---r-- 1 root root 91 Oct 10 17:58 autoexec.bat

-rwx---r-- 1 root root 245 Oct 10 17:58 config.sys

drwx---r-- 41 root root 16384 Dec 30 1998 windows

Mounting the FAT filesystem with a umask of000 gives all users complete control over
it. Explicitly specifying the permissions of the FAT filesystem when it is mounted
provides additional control. There are three mount options that are relevant to FAT

14

Chapter 3. Installing/compiling Wine

permissions:uid , gid andumask. They can each be specified when the filesystem is
manually mounted. For example:

~>umount /c
~>mount -o uid=500 -o gid=500 -o umask=002 /c
~>cd /c
/c> ls -l
-rwxrwxr-x 1 sle sle 91 Oct 10 17:58 autoexec.bat

-rwxrwxr-x 1 sle sle 245 Oct 10 17:58 config.sys

drwxrwxr-x 41 sle sle 16384 Dec 30 1998 windows

which gives "sle" complete control over/c . The options listed above can be made
permanent by adding them to the/etc/fstab file:

~>grep /c /etc/fstab
/dev/hda1 /c vfat uid=500,gid=500,umask=002,exec,dev,suid,rw 1 1

Note that the umask of002 is common in the user private group file permission
scheme. On FAT file systems this umask assures that all files are fully accessible by all
users in the specified group (gid).

3.3.4. Shadowing FAT filesystems
Shadowing provides a finer granularity of control. Parts of the original FAT filesystem
can be copied so that the application can safely work with those copied parts while the
application continues to directly read the remaining parts. This is done with symbolic
links. For example, consider a system where an application named AnApp must be able
to read and write to thec:\windows andc:\AnApp directories as well as have read
access to the entire FAT filesystem. On this system the FAT filesystem has default
permissions which should not be changed for security reasons or can not be changed
due to lack of root access. On this system a shadow directory might be set up in the
following manner:

15

Chapter 3. Installing/compiling Wine

~>cd /
/> mkdir c_shadow
/> cd c_shadow
/c_shadow> ln -s /c_/* .
/c_shadow> rm windows AnApp
/c_shadow> cp -R /c_/{windows,AnApp} .
/c_shadow> chmod -R 777 windows AnApp
/c_shadow> perl -p -i -e ’s|/c$|/c_shadow|g’ /usr/local/etc/wine.conf

The above gives everyone complete read and write access to thewindows andAnApp

directories while only root has write access to all other directories.

3.4. SCSI Support
Written by Bruce Milner <>; Additions by Andreas Mohr
<amohr@codeweavers.com >

(Extracted fromwine/documentation/aspi)

This file describes setting up the Windows ASPI interface.

Warning/Warning/Warning!!!!!!

THIS MAY TRASH YOUR SYSTEM IF USED INCORRECTLY
THIS MAY TRASH YOUR SYSTEM IF USED CORRECTLY

Now that I have said that. ASPI is a direct link to SCSI devices from windows
programs. ASPI just forwards the SCSI commands that programs send to it to the SCSI
bus.

16

Chapter 3. Installing/compiling Wine

If you use the wrong SCSI device in your setup file, you can send completely bogus
commands to the wrong device - An example would be formatting your hard drives
(assuming the device gave you permission - if you’re running as root, all bets are off).

So please make sure thatall SCSI devices not needed by the program have their
permissions set as restricted as possible !

Cookbook for setting up scanner: (At least how mine is to work) (well, for other
devices such as CD burners, MO drives, ..., too)

3.4.1. Windows requirements

1. The scanner software needs to use the "Adaptec" compatible drivers (ASPI). At
least with Mustek, they allow you the choice of using the builtin card or the
"Adaptec (AHA)" compatible drivers. This will not work any other way. Software
that accesses the scanner via a DOS ASPI driver (e.g. ASPI2DOS) is supported,
too. [AM]

2. You probably need a real windows install of the software to set the LUN’s/SCSI
id’s up correctly. I’m not exactly sure.

3.4.2. LINUX requirements:

1. Your SCSI card must be supported under linux. This will not work with an
unknown SCSI card. Even for cheap’n crappy "scanner only" controllers some
special Linux drivers exist on the net. If you intend to use your IDE device, you
need to use the ide-scsi emulation. Read
http://www.linuxdoc.org/HOWTO/CD-Writing-HOWTO.html
(http://www.linuxdoc.org/HOWTO/CD-Writing-HOWTO.html) for ide-scsi setup
instructions.

2. Compile generic SCSI drivers into your kernel.

17

Chapter 3. Installing/compiling Wine

3. This seems to be not required any more for newer (2.2.x) kernels: Linux by default
uses smaller SCSI buffers than Windows. There is a kernel build define
SG_BIG_BUFF(in sg.h) that is by default set too low. The SANE project
recommends130560 and this seems to work just fine. This does require a kernel
rebuild.

4. Make the devices for the scanner (generic SCSI devices) - look at the SCSI
programming HOWTO at
http://www.linuxdoc.org/HOWTO/SCSI-Programming-HOWTO.html
(http://www.linuxdoc.org/HOWTO/SCSI-Programming-HOWTO.html) for device
numbering.

5. I would recommend making the scanner device writable by a group. I made a
group calledscanner and added myself to it. Running as root increases your risk
of sending bad SCSI commands to the wrong device. With a regular user, you are
better protected.

6. For Win32 software (WNASPI32), Wine has auto-detection in place. For Win16
software (WINASPI), you need to add a SCSI device entry for your particular
scanner to ~/.wine/config. The format is[scsi cCtTdD] where"C" =

"controller" , "T" = "target" , D=LUN

For example, I set mine up as controller0, Target6, LUN 0.

[scsi c0t6d0]
"Device" = "/dev/sgi"

Yours will vary with your particular SCSI setup.

3.4.3. General Information
The mustek scanner I have was shipped with a package "ipplus". This program uses the
TWAIN driver specification to access scanners.

(TWAIN MANAGER)

18

Chapter 3. Installing/compiling Wine

ipplus.exe <---> (TWAIN INTERFACE) <---> (TWAIN DATA SOURCE . ASPI) -
> WINASPI

3.4.4. NOTES/BUGS
The biggest is that it only works under linux at the moment.

The ASPI code has only been tested with:

• a Mustek 800SP with a Buslogic controller under Linux [BM]

• a Siemens Nixdorf 9036 with Adaptec AVA-1505 under Linux accessed via
DOSASPI. Note that I had color problems, though (barely readable result) [AM]

• a Fujitsu M2513A MO drive (640MB) using generic SCSI drivers. Formatting and
ejecting worked perfectly. Thanks to Uwe Bonnes for access to the hardware ! [AM]

I make no warranty to the ASPI code. It makes my scanner work. Your devices may
explode. I have no way of determining this. I take zero responsibility!

19

Chapter 4. Configuring Wine
Setting up config files, etc.

4.1. General Configuration
Copyright 1999 Adam Sacarny <magicbox@bestweb.net >

(Extracted fromwine/documentation/config)

4.1.1. The Wine Config File
The Wine config file stores various settings for Wine. These include:

• Drives and Information about them

• Directory Settings

• Port Settings

• The Wine look and feel

• Wine’s DLL Usage

• Wine’s Multimedia drivers and DLL configuration

4.1.2. How Do I Make One?
This section will guide you through the process of making a config file. Take a look at
the file<dirs to wine>/documentation/samples/config . It is organized by
section.

20

Chapter 4. Configuring Wine

Section Name Needed? What it Does
[Drive X] yes Sets up drives recognized by

wine

[wine] yes Settings for wine directories

[DllDefaults] recmd Defaults for loading DLL’s

[DllPairs] recmd Sanity checkers for DLL’s

[DllOverrides] recmd Overides defaults for DLL
loading

[options] no No one seems to know

[fonts] yes Font appearance and
recognition

[serialports] no COM ports seen by wine

[parallelports] no LPT ports seen by wine

[spooler] no Print spooling

[ports] no Direct port access

[spy] no What to do with certain
debug messages

[Registry] no Specifies locations of
windows registry files

[tweak.layout] recmd Appearance of wine

[programs] no Programs to be run
automatically

[Console] no Console settings

[WinMM] yes Multimedia settings

4.1.2.1. The [Drive X] Section

It should be pretty self explanatory, but here is an in-depth tutorial about them. There
are up to 6 lines for each drive in Wine.

[Drive X]

21

Chapter 4. Configuring Wine

The above line begins the section for a drive whose letter is X.

Path=/dir/to/path

This path is where the drive will begin. When Wine is browsing in drive X, it will see
the files that are in the directory/dir/to/path . Don’t forget to leave off the trailing
slash!

"Type" = "floppy|hd|cdrom|network" <--- the |’s mean "Type = ’<one of the op-
tions>’"

Sets up the type of drive Wine will see it as. Type must equal one of the fourfloppy ,
hd, cdrom , or network . They are self-explanatory.

"Label" = "blah"

Defines the drive label. Generally only needed for programs that look for a special
CD-ROM. Info on finding the lable is in<dirs to

wine>/documentation/cdrom-labels . The label may be up to 11 characters.

"Serial" = "deadbeef"

Tells Wine the serial number of the drive. A few programs with intense protection for
pirating might need this, but otherwise don’t use it. Up to 8 characters and hexadecimal.

"Filesystem" = "msdos|win95|unix"

Sets up the way Wine looks at files on the drive.

msdos

Case insensitive filesystem. Alike to DOS and Windows 3.x.8.3 is the maximum
length of files (eightdot.123) - longer ones will be truncated. (NOTE: this is a very

22

Chapter 4. Configuring Wine

bad choice if you plan on running apps that use long filenames. win95 should
work fine with apps that were designed to run under the msdos system. In other
words, you might not want to use this.)

win95

Case insensitive. Alike to Windows 9x/NT 4. This is the long filename filesystem
you are probably used to working with. The filesystem of choice for most
applications to be run under wine. PROBABLY THE ONE YOU WANT!

unix

Case sensitive. This filesystem has almost no use (Windows apps expect case
insensitive filenames). Try it if you dare, but win95 is a much better choice.

"Device" = "/dev/xx"

Use this ONLY for floppy and cdrom devices. Using it on Extended2 partitions can
have dire results (when a windows app tries to do a lowlevel write, they do it in a FAT
way -- FAT does not mix with Extended2).

Note: This setting is not really important; almost all apps will have no problem if it
remains unspecified. For CD-ROMs you might want to add it to get automatic
label detection, though. If you are unsure about specifying device names, just
leave out this setting for your drives.

Here is a setup for Drive X, a generic hard drive:

[Drive X]
"Path" = "/dos-a"
"Type" = "hd"
"Label" = "Hard Drive"
"Filesystem" = "win95"
This is a setup for Drive X, a generic CD-ROM drive:
[Drive X]
"Path" = "/dos-d"

23

Chapter 4. Configuring Wine

"Type" = "cdrom"
"Label" = "Total Annihilation"
"Filesystem" = "win95"
"Device" = "/dev/hdc"
And here is a setup for Drive X, a generic floppy drive:
[Drive X]
"Type" = "floppy"
"Path" = "/mnt/floppy"
"Label" = "Floppy Drive"
"Serial" = "87654321"
"Filesystem" = "win95"
"Device" = "/dev/fd0"

4.1.2.2. The [wine] Section

The [wine] section of the configuration file contains information wine uses for
directories. When specifying the directories for the settings, make them as they would
appear in wine. If your driveC has a path of/dos , and yourwindows directory is
located in/dos/windows , then use:

"Windows" = "c:\\windows"

This sets up thewindows directory. Make one if you don’t already have one. NO
TRAILING SLASH (NOT C:\\windows\)!

"System" = "c:\\windows\\system"

This sets up where the windows system files are. Should reside in the directory used for
theWindows setting. If you don’t havewindows then this is where the system files will
go. Again, NO TRAILING SLASH!

24

Chapter 4. Configuring Wine

"Temp" = "c:\\temp"

This should be the directory you want your temp files stored in. YOU MUST HAVE
WRITE ACCESS TO IT.

"Path" = "c:\\windows;c:\\windows\\system;c:\\blanco"

Behaves like the PATH setting on UNIX boxes. When wine is run likewine
sol.exe , if sol.exe resides in a directory specified in thePath setting, wine will
run it (Of course, ifsol.exe resides in the current directory, wine will run that one).
Make sure it always has yourwindows directory and system directory (For this setup,
it must have"c:\\windows;c:\\windows\\system").

"SymbolTableFile" = "wine.sym"

Sets up the symbol table file for the wine debugger. You probably don’t need to fiddle
with this. May be useful if your wine is stripped.

"printer" = "off|on"

Tells wine whether to allow printer drivers and printing to work. Using these things are
pretty alpha, so you might want to watch out. Some people might find it useful,
however. If you’re not planning on working on printing, don’t even add this to your
~/.wine/config (It probably isn’t already in it). Check out the [spooler] and
[parallelports] sections too.

4.1.2.3. Introduction To DLL Sections

There are a few things you will need to know before configuring the DLL sections in
your wine configuration file.

25

Chapter 4. Configuring Wine

4.1.2.3.1. Windows DLL Pairs

Most windows DLL’s have a win16 (Windows 3.x) and win32 (Windows 9x/NT) form.
The combination of the win16 and win32 DLL versions are called the "DLL pair". This
is a list of the most common pairs:

Win16 Win32 Native a

KERNEL KERNEL32 No!

USER USER32 No!

SHELL SHELL32 Yes

GDI GDI32 No!

COMMDLG COMDLG32 Yes

VER VERSION Yes

Notes: a. Is it possible to use native dll with wine? (See next section)

4.1.2.3.2. Different Forms Of DLL’s

There are a few different forms of DLL’s wine can load:

native

The DLL’s that are included with windows. Many windows DLL’s can be loaded
in their native form. Many times these native versions work better than their
non-Microsoft equivalent -- other times they don’t.

elfdll

ELF encapsulated windows DLL’s. This is currently experimental (Not working
yet).

so

Native ELF libraries. Will not work yet.

26

Chapter 4. Configuring Wine

builtin

The most common form of DLL loading. This is what you will use if the DLL is
error-prone in native form (KERNEL for example), you don’t have the native
DLL, or you just want to be Microsoft-free.

4.1.2.4. The [DllDefaults] Section

These settings provide wine’s default handling of DLL loading.

"DefaultLoadOrder" =" native, so, builtin"

This setting is a comma-delimited list of which order to attempt loading DLL’s. If the
first option fails, it will try the second, and so on. The order specified above is probably
the best in most conditions.

4.1.2.5. The [DllPairs] Section

At one time, there was a section called [DllPairs] in the default configuration file, but
this has been obsoleted because the pairing information has now been embedded into
Wine itself. (The purpose of this section was merely to be able to issue warnings if the
user attempted to pair codependent 16-bit/32-bit DLLs of different types.) If you still
have this in yourwine.conf or ~/.wine/config , you may safely delete it.

4.1.2.6. The [DllOverrides] Section

The format for this section is the same for each line:

<DLL>{,<DLL>,<DLL>...} = <FORM>{,<FORM>,<FORM>...}

27

Chapter 4. Configuring Wine

For example, to load builtin KERNEL pair (case doesn’t matter here):

"kernel,kernel32" = "builtin"

To load the native COMMDLG pair, but if that doesn’t work try builtin:

"commdlg,comdlg32" = "native,builtin"

To load the native COMCTL32:

"comctl32" = "native"

Here is a good generic setup (As it is defined in config that was included with your
wine package):

[DllOverrides]
"commdlg" = "builtin, native"
"comdlg32" = "builtin, native"
"ver" = "builtin, native"
"version" = "builtin, native"
"shell" = "builtin, native"
"shell32" = "builtin, native"
"lzexpand" = "builtin, native"
"lz32" = "builtin, native"
"comctl32" = "builtin, native"
"commctrl" = "builtin, native"
"wsock32" = "builtin"
"winsock" = "builtin"
"advapi32" = "builtin, native"

28

Chapter 4. Configuring Wine

"crtdll" = "builtin, native"
"mpr" = "builtin, native"
"winspool.drv" = "builtin, native"
"ddraw" = "builtin, native"
"dinput" = "builtin, native"
"dsound" = "builtin, native"
"mmsystem" = "builtin"
"winmm" = "builtin"
"msvcrt" = "native, builtin"
"msvideo" = "builtin, native"
"msvfw32" = "builtin, native"
"mcicda.drv" = "builtin, native"
"mciseq.drv" = "builtin, native"
"mciwave.drv" = "builtin, native"
"mciavi.drv" = "native, builtin"
"mcianim.drv" = "native, builtin"
"msacm.drv" = "builtin, native"
"msacm" = "builtin, native"
"msacm32" = "builtin, native"
"midimap.drv" = "builtin, native"
"wnaspi32" = "builtin"
"icmp" = "builtin"

Note: You see that elfdll or so is the first option for a few of these dll’s. This will fail
for you, but you won’t notice it as wine will just use the second or third option.

4.1.2.7. The [options] Section

No one seems to know what this section is...

"AllocSystemColors" = "100"

29

Chapter 4. Configuring Wine

System colors to allocate? Just leave it at 100.

4.1.2.8. The [fonts] Section

This section sets up wine’s font handling.

"Resolution" = "96"

Since the way X handles fonts is different from the way Windows does, wine uses a
special mechanism to deal with them. It must scale them using the number defined in
the "Resolution" setting. 60-120 are reasonable values, 96 is a nice in the middle one. If
you have the real windows fonts available (<dirs to

wine>/documentation/ttfserver andfonts), this parameter will not be as
important. Of course, it’s always good to get your X fonts working acceptably in wine.

"Default" = "-adobe-times-"

The default font wine uses. Fool around with it if you’d like.

OPTIONAL:

TheAlias setting allows you to map an X font to a font used in wine. This is good for
apps that need a special font you don’t have, but a good replacement exists. The syntax
is like so:

"AliasX" = "[Fake windows name],[Real X name]"<,optional "masking" sec-
tion>

Pretty straightforward. Replace "AliasX" with "Alias0", then "Alias1" and so on. The
fake windows name is the name that the font will be under a windows app in wine. The

30

Chapter 4. Configuring Wine

real X name is the font name as seen by X (Run "xfontsel"). The optional "masking"
section allows you to utilize the fake windows name you define. If it is not used, then
wine will just try to extract the fake windows name itself and not use the value you
enter.

Here is an example of an alias without masking. The font will show up in windows
apps as "Google". When defining an alias in a config file, forget about my comment
text (The "<-- blah" stuff)

"Alias0" = "Foo,--google-" <

Here is an example with masking enabled. The font will show up as "Foo" in windows
apps.

"Alias1" = "Foo,--google-,subst"

For more info check out<dirs to wine>/documentation/fonts

4.1.2.9. The [serialports], [parallelports], [spooler], and
[ports] Sections

Even though it sounds like a lot of sections, these are all closely related. They are all
for communications and parallel ports.

The [serialports] section tells wine what serial ports it is allowed to use.

"ComX" = "/dev/cuaY"

ReplaceX with the number of the COM port in Windows (1-8) andY with the number
of it in X (Usually the number of the port in Windows minus 1).ComXcan actually

31

Chapter 4. Configuring Wine

equal any device (/dev/modemis acceptable). It is not always necessary to define any
COM ports (An optional setting). Here is an example:

"Com1" = "/dev/cua0"

Use as many of these as you like in the section to define all of the COM ports you need.

The [parallelports] section sets up any parallel ports that will be allowed access under
wine.

"LptX" = "/dev/lpY"

Sounds familiar? Syntax is just like the COM port setting. ReplaceX with a value from
1-4 as it is in Windows andY with a value from 0-3 (Y is usually the value in windows
minus 1, just like for COM ports). You don’t always need to define a parallel port
(AKA, it’s optional). As with the other section, LptX can equal any device (Maybe
/dev/printer). Here is an example:

"Lpt1" = "/dev/lp0"

The [spooler] section will inform wine where to spool print jobs. Use this if you want
to try printing. Wine docs claim that spooling is "rather primitive" at this time, so it
won’t work perfectly. IT IS OPTIONAL. The only setting you use in this section works
to map a port (LPT1, for example) to a file or a command. Here is an example,
mapping LPT1 to the fileout.ps :

"LPT1:" = "out.ps"

The following command maps printing jobs to LPT1 to the commandlpr . Notice the |:

"LPT1:" = "|lpr"

32

Chapter 4. Configuring Wine

The [ports] section is usually useful only for people who need direct port access for
programs requiring dongles or scanners. IF YOU DON’T NEED IT, DON’T USE IT!

"read" = "0x779,0x379,0x280-0x2a0"

Gives direct read access to those IO’s.

"write" = "0x779,0x379,0x280-0x2a0"

Gives direct write access to those IO’s. It’s probably a good idea to keep the values of
theread andwrite settings the same. This stuff will only work when you’re root.

4.1.2.10. The [spy], [Registry], [tweak.layout], and [programs]
Sections

[spy] is used to include or exclude debug messages, and to output them to a file. The
latter is rarely used. THESE ARE ALL OPTIONAL AND YOU PROBABLY DON’T
NEED TO ADD OR REMOVE ANYTHING IN THIS SECTION TO YOUR
CONFIG.

"File" = "/blanco"

Sets the logfile for wine. Set to CON to log to standard out. THIS IS RARELY USED.

"Exclude" = "WM_SIZE;WM_TIMER;"

Excludes debug messages aboutWM_SIZEandWM_TIMERin the logfile.

"Include" = "WM_SIZE;WM_TIMER;"

Includes debug messages aboutWM_SIZEandWM_TIMERin the logfile.

33

Chapter 4. Configuring Wine

[Registry] can be used to tell wine where your old windows registry files exist. This
section is completely optional and useless to people using wine without an existing
windows installation.

"UserFileName" = "/dirs/to/user.reg"

The location of your olduser.reg file.

[tweak.layout] is devoted to wine’s look. There is only one setting for it.

"WineLook" = "win31|win95|win98"

Will change the look of wine from Windows 3.1 to Windows 95. Thewin98 setting
behaves just likewin95 most of the time.

[programs] can be used to say what programs run under special conditions.

"Default" = "/program/to/execute.exe"

Sets the program to be run if wine is started without specifying a program.

"Startup" = "/program/to/execute.exe"

Sets the program to automatically be run at startup every time.

4.1.2.11. The [WinMM] Section

[WinMM] is used to define which multimedia drivers have to be loaded. Since those
drivers may depend on the multimedia interfaces available on your sustem (OSS,
Alsa... to name a few), it’s needed to be able to configure which driver has to be loaded.

The content of the section looks like:

[WinMM]
"Drivers" = "wineoss.drv"
"WaveMapper" = "msacm.drv"

34

Chapter 4. Configuring Wine

"MidiMapper" = "midimap.drv"

All the keys must be defined:

• The "Drivers" key is a ’;’ separated list of modules name, each of them containing a
low level driver. All those drivers will be loaded when MMSYSTEM/WINMM is
started and will provide their inner features.

• The "WaveMapper" represents the name of the module containing the Wave Mapper
driver. Only one wave mapper can be defined in the system.

• The "MidiMapper" represents the name of the module containing the Midi Mapper
driver. Only one Midi mapper can be defined in the system.

4.1.3. Where Do I Put It?
The wine config file can go in two places.

/usr/local/etc/wine.conf

A systemwide config file, used for anyone who doesn’t have their own. NOTE:
this file is currently unused as a new global configuration mechanism is not in
place at this time

$HOME/.wine/config

Your own config file, that only is used for your user.

So copy your version of thewine.conf file to /usr/local/etc/wine.conf or
$HOME/.wine/config for wine to recognize it.

35

Chapter 4. Configuring Wine

4.1.4. What If It Doesn’t Work?
There is always a chance that things will go wrong. If the unthinkable happens, try the
newsgroup, comp.emulators.ms-windows.wine, or the IRCnet channel #WineHQ found
on irc.stealth.net:6668, or connected servers. Make sure that you have looked over this
document thoroughly, and have also read:

• README

• http://www.la-sorciere.de/wine/index.html (optional but recommended)

If indeed it looks like you’ve done your research, be prepared for helpful suggestions. If
you haven’t, brace yourself for heaving flaming.

4.2. Win95/98 Look
Written by David A. Cuthbert <dacut@ece.cmu.edu >

(Extracted fromwine/documentation/win95look)

Win95/Win98 interface code is being introduced.

Instead of compiling Wine for Win3.1 vs. Win95 using#define switches, the code
now looks in a special [Tweak.Layout] section of~/.wine/config for a
"WineLook" = "Win95" or "WineLook" = "Win98" entry.

A few new sections and a number of entries have been added to the~/.wine/config

file -- these are for debugging the Win95 tweaks only and may be removed in a future
release! These entries/sections are:

[Tweak.Fonts]
"System.Height" = "<point size>" # Sets the height of the sys-
tem typeface
"System.Bold" = "[true|false]" # Whether the system font should be boldfaced
"System.Italic" = "[true|false]" # Whether the system font should be italicized
"System.Underline" = "[true|false]" # Whether the system font should be underlined

36

Chapter 4. Configuring Wine

"System.StrikeOut" = "[true|false]" # Whether the system font should be struck out
"OEMFixed.xxx" # Same parameters for the OEM fixed typeface
"AnsiFixed.xxx" # Same parameters for the Ansi fixed typeface
"AnsiVar.xxx" # Same parameters for the Ansi vari-
able typeface
"SystemFixed.xxx" # Same parameters for the System fixed typeface

[Tweak.Layout]
"WineLook" = "[Win31|Win95|Win98]" # Changes Wine’s look and feel

4.3. Configuring the x11drv Driver
Written by Ove Kåven <ovek@winehq.com >

(Extracted fromwine/documentation/cdrom-labels)

Most Wine users run Wine under the windowing system known as X11. During most of
Wine’s history, this was the only display driver available, but in recent years, parts of
Wine has been reorganized to allow for other display drivers (although the only
alternative currently available is Patrik Stridvall’s ncurses-based ttydrv, which he
claims works for displaying calc.exe). The display driver is chosen with the
GraphicsDriver option in the [wine] section of~/.wine/config , but I will only
cover the x11drv driver in this article.

4.3.1. x11drv modes of operation
Note: This is now all done in the config file. Needs an update...

The x11drv driver consists of two conceptually distinct pieces, the graphics driver (GDI
part), and the windowing driver (USER part). Both of these are linked into the
libx11drv.so module, though (which you load with theGraphicsDriver option).
In Wine, running on X11, the graphics driver must draw on drawables (window
interiors) provided by the windowing driver. This differs a bit from the Windows

37

Chapter 4. Configuring Wine

model, where the windowing system creates and configures device contexts controlled
by the graphics driver, and applications are allowed to hook into this relationship
anywhere they like. Thus, to provide any reasonable tradeoff between compatibility and
usability, the x11drv has three different modes of operation.

Unmanaged/Normal

The default. Window-manager-independent (any running window manager is
ignored completely). Window decorations (title bars, borders, etc) are drawn by
Wine to look and feel like the real Windows. This is compatible with applications
that depend on being able to compute the exact sizes of any such decorations, or
that want to draw their own.

Managed

Specified by using the--managed command-line option or theManaged

wine.conf option (see below). Ordinary top-level frame windows with thick
borders, title bars, and system menus will be managed by your window manager.
This lets these applications integrate better with the rest of your desktop, but may
not always work perfectly. (A rewrite of this mode of operation, to make it more
robust and less patchy, is highly desirable, though, and is planned to be done
before the Wine 1.0 release.)

Desktop-in-a-Box

Specified by using the--desktop command-line option (with a geometry, e.g.
--desktop 800x600 for a such-sized desktop, or even--desktop
800x600+0+0 to automatically position the desktop at the upper-left corner of
the display). This is the mode most compatible with the Windows model. All
application windows will just be Wine-drawn windows inside the Wine-provided
desktop window (which will itself be managed by your window manager), and
Windows applications can roam freely within this virtual workspace and think
they own it all, without disturbing your other X apps.

38

Chapter 4. Configuring Wine

4.3.2. The [x11drv] section

AllocSystemColors

Applies only if you have a palette-based display, i.e. if your X server is set to a
depth of 8bpp, and if you haven’t requested a private color map. It specifies the
maximum number of shared colormap cells (palette entries) Wine should occupy.
The higher this value, the less colors will be available to other applications.

PrivateColorMap

Applies only if you have a palette-based display, i.e. if your X server is set to a
depth of 8bpp. It specifies that you don’t want to use the shared color map, but a
private color map, where all 256 colors are available. The disadvantage is that
Wine’s private color map is only seen while the mouse pointer is inside a Wine
window, so psychedelic flashing and funky colors will become routine if you use
the mouse a lot.

PerfectGraphics

This option only determines whether fast X11 routines or exact Wine routines
will be used for certain ROP codes in blit operations. Most users won’t notice any
difference.

ScreenDepth

Applies only to multi-depth displays. It specifies which of the available depths
Wine should use (and tell Windows apps about).

Display

This specifies which X11 display to use, and if specified, will override both the
DISPLAY environment variable and the--display command-line option.

Managed

Wine can let frame windows be managed by your window manager. This option
specifies whether you want that by default.

39

Chapter 4. Configuring Wine

UseDGA

This specifies whether you want DirectDraw to use XFree86’sDirect Graphics
Architecture(DGA), which is able to take over the entire display and run the game
full-screen at maximum speed. (With DGA1 (XFree86 3.x), you still have to
configure the X server to the game’s requested bpp first, but with DGA2 (XFree86
4.x), runtime depth-switching may be possible, depending on your driver’s
capabilities.) But be aware that if Wine crashes while in DGA mode, it may not be
possible to regain control over your computer without rebooting. DGA normally
requires either root privileges or read/write access to/dev/mem .

UseXShm

If you don’t want DirectX to use DGA, you can at least use X Shared Memory
extensions (XShm). It is much slower than DGA, since the app doesn’t have direct
access to the physical frame buffer, but using shared memory to draw the frame is
at least faster than sending the data through the standard X11 socket, even though
Wine’s XShm support is still known to crash sometimes.

DXGrab

If you don’t use DGA, you may want an alternative means to convince the mouse
cursor to stay within the game window. This option does that. Of course, as with
DGA, if Wine crashes, you’re in trouble (although not as badly as in the DGA
case, since you can still use the keyboard to get out of X).

DesktopDoubleBuffered

Applies only if you use the--desktop command-line option to run in a
desktop window. Specifies whether to create the desktop window with a
double-buffered visual, something most OpenGL games need to run correctly.

TextCP

To be documented...

XVideoPort

To be documented...

40

Chapter 4. Configuring Wine

Synchronous

To be documented...

4.4. The Registry
written by Ove Kåven

(Extracted fromwine/documentation/registry)

After Win3.x, the registry became a fundamental part of Windows. It is the place where
both Windows itself, and all Win95/98/NT/2000/whatever-compliant applications,
store configuration and state data. While most sane system administrators (and Wine
developers) curse badly at the twisted nature of the Windows registry, it is still
necessary for Wine to support it somehow.

4.4.1. Registry structure
The Windows registry is an elaborate tree structure, and not even most Windows
programmers are fully aware of how the registry is laid out, with its different "hives"
and numerous links between them; a full coverage is out of the scope of this document.
But here are the basic registry keys you might need to know about for now.

HKEY_LOCAL_MACHINE

This fundamental root key (in win9x, stored in the hidden filesystem.dat)
contains everything pertaining to the current Windows installation.

HKEY_USERS

This fundamental root key (in win9x, stored in the hidden fileuser.dat)
contains configuration data for every user of the installation.

41

Chapter 4. Configuring Wine

HKEY_CLASSES_ROOT

This is a link to HKEY_LOCAL_MACHINE\Software\Classes. It contains data
describing things like file associations, OLE document handlers, and COM
classes.

HKEY_CURRENT_USER

This is a link to HKEY_USERS\your_username, i.e., your personal configuration.

4.4.2. Using a Windows registry
If you point Wine at an existing MS Windows installation (by setting the appropriate
directories in~/.wine/config , then Wine is able to load registry data from it.
However, Wine will not save anything to the real Windows registry, but rather to its
own registry files (see below). Of course, if a particular registry value exists in both the
Windows registry and in the Wine registry, then Wine will use the latter.

Occasionally, Wine may have trouble loading the Windows registry. Usually, this is
because the registry is inconsistent or damaged in some way. If that becomes a
problem, you may want to download theregclean.exe from the MS website and use
it to clean up the registry. Alternatively, you can always useregedit.exe to export
the registry data you want into a text file, and then import it in Wine.

4.4.3. Wine registry data files
In the user’s home directory, there is a subdirectory named.wine , where Wine will try
to save its registry by default. It saves into four files, which are:

system.reg

This file contains HKEY_LOCAL_MACHINE.

42

Chapter 4. Configuring Wine

user.reg

This file contains HKEY_CURRENT_USER.

userdef.reg

This file contains HKEY_USERS\.Default (i.e. the default user settings).

wine.userreg

Wine saves HKEY_USERS to this file (both current and default user), but does
not load from it, unlessuserdef.reg is missing.

All of these files are human-readable text files, so unlike Windows, you can actually
use an ordinary text editor on them if you must.

In addition to these files, Wine can also optionally load from global registry files
residing in the same directory as the globalwine.conf (i.e. /usr/local/etc if you
compiled from source). These are:

wine.systemreg

Contains HKEY_LOCAL_MACHINE.

wine.userreg

Contains HKEY_USERS.

4.4.4. System administration
With the above file structure, it is possible for a system administrator to configure the
system so that a system Wine installation (and applications) can be shared by all the
users, and still let the users all have their own personalized configuration. An
administrator can, after having installed Wine and any Windows application software
he wants the users to have access to, copy the resultingsystem.reg and
wine.userreg over to the global registry files (which we assume will reside in
/usr/local/etc here), with:

43

Chapter 4. Configuring Wine

cd ~/.wine
cp system.reg /usr/local/etc/wine.systemreg
cp wine.userreg /usr/local/etc/wine.userreg

and perhaps even symlink these back to the administrator’s account, to make it easier to
install apps system-wide later:

ln -sf /usr/local/etc/wine.systemreg system.reg
ln -sf /usr/local/etc/wine.userreg wine.userreg

Note that thetools/wineinstall script already does all of this for you, if you install
Wine as root. If you then install Windows applications while logged in as root, all your
users will automatically be able to use them. While the application setup will be taken
from the global registry, the users’ personalized configurations will be saved in their
own home directories.

But be careful with what you do with the administrator account - if you do copy or link
the administrator’s registry to the global registry, any user might be able to read the
administrator’s preferences, which might not be good if sensitive information
(passwords, personal information, etc) is stored there. Only use the administrator
account to install software, not for daily work; use an ordinary user account for that.

4.4.5. The default registry
A Windows registry contains many keys by default, and some of them are necessary for
even installers to operate correctly. The keys that the Wine developers have found
necessary to install applications are distributed in a file calledwinedefault.reg . It is
automatically installed for you if you use thetools/wineinstall script, but if you
want to install it manually, you can do so by using theregapi tool. You can find more
information about this in thedocumentation/no-windows document in the Wine
distribution.

44

Chapter 4. Configuring Wine

4.4.6. The [registry] section
With the above information fresh in mind, let’s look at the
wine.conf /~/.wine/config options for handling the registry.

LoadGlobalRegistryFiles

Controls whether to try to load the global registry files, if they exist.

LoadHomeRegistryFiles

Controls whether to try to load the user’s registry files (in the.wine subdirectory
of the user’s home directory).

LoadWindowsRegistryFiles

Controls whether Wine will attempt to load registry data from a real Windows
registry in an existing MS Windows installation.

WritetoHomeRegistryFiles

Controls whether registry data will be written to the user’s registry files.
(Currently, there is no alternative, so if you turn this off, Wine cannot save the
registry on disk at all; after you exit Wine, your changes will be lost.)

UseNewFormat

This option is obsolete. Wine now always use the new format; support for the old
format was removed a while ago.

PeriodicSave

If this option is set to a nonzero value, it specifies that you want the registry to be
saved to disk at the given interval. If it is not set, the registry will only be saved to
disk when the wineserver terminates.

SaveOnlyUpdatedKeys

Controls whether the entire registry is saved to the user’s registry files, or only
subkeys the user have actually changed. Considering that the user’s registry will

45

Chapter 4. Configuring Wine

override any global registry files and Windows registry files, it usually makes
sense to only save user-modified subkeys; that way, changes to the rest of the
global or Windows registries will still affect the user.

4.5. Drive labels and serial numbers with wine
Written by Petr Tomasek <tomasek@etf.cuni.cz > Nov 14 1999

Changes by Andreas Mohr <amohr@codeweavers.com > Jan 25 2000

(Extracted fromwine/documentation/cdrom-labels)

Until now, your only possibility of specifying drive volume labels and serial numbers
was to set them manually in the wine config file. By now, wine can read them directly
from the device as well. This may be useful for many Win 9x games or for setup
programs distributed on CD-ROMs that check for volume label.

4.5.1. What’s Supported?

File System Types Comment
FAT systems hd, floppy reads labels and serial

numbers

ISO9660 cdrom reads labels only

4.5.2. How To Set Up?
Reading labels and serial numbers just works automagically if you specify aDevice=

line in the [Drive X] section in your~/.wine/config . Note that the device has to
exist and must be accessible if you do this, though.

If you don’t do that, then you should give fixed"Label" = or "Serial" = entries in

46

Chapter 4. Configuring Wine

~./wine/config , as Wine returns these entries instead if no device is given. If they
don’t exist, then Wine will return default values (labelDrive X and serial12345678).

If you want to give a"Device" = entryonly for drive raw sector accesses, but not for
reading the volume info from the device (i.e. you want afixed, preconfigured label),
you need to specify"ReadVolInfo" = "0" to tell Wine to skip the volume reading.

4.5.3. EXAMPLES
Here’s a simple example of cdrom and floppy; labels will be read from the device on
both cdrom and floppy; serial numbers on floppy only:

[Drive A]
"Path" = "/mnt/floppy"
"Type" = "floppy"
"Device" = "/dev/fd0"
"Filesystem" = "msdos"

[Drive R]
"Path" = "/mnt/cdrom"
"Type" = "cdrom"
"Device" = "/dev/hda1"
"Filesystem" = "win95"

Here’s an example of overriding the CD-ROM label:

[Drive J]
"Path" = "/mnt/cdrom"
"Type" = "cdrom"
"Label" = "X234GCDSE"
; note that the device isn’t really needed here as we have a fixed label
"Device" = "/dev/cdrom"
"Filesystem" = "msdos"

47

Chapter 4. Configuring Wine

4.5.4. Todo / Open Issues

• The cdrom label can be read only if the data track of the disk resides in the first track
and the cdrom is iso9660.

• Better checking for FAT superblock (it now checks only one byte).

• Support for labels/serial nums WRITING.

• Can the label be longer than 11 chars? (iso9660 has 32 chars).

• What about reading ext2 volume label?

4.6. Dll Overrides
Written by Ove Kåven <ovek@winehq.com >

(Extracted fromwine/documentation/dll-overrides)

Thewine.conf directives [DllDefaults] and [DllOverrides] are the subject of some
confusion. The overall purpose of most of these directives are clear enough, though -
given a choice, should Wine use its own built-in DLLs, or should it use.DLL files found
in an existing Windows installation? This document explains how this feature works.

4.6.1. DLL types

native

A "native" DLL is a .DLL file written for the real Microsoft Windows.

builtin

A "builtin" DLL is a Wine DLL. These can either be a part oflibwine.so , or
more recently, in a special.so file that Wine is able to load on demand.

48

Chapter 4. Configuring Wine

elfdll

An "elfdll" is a Wine .so file with a special Windows-like file structure that is as
close to Windows as possible, and that can also seamlessly link dynamically with
"native" DLLs, by using special ELF loader and linker tricks. Bertho Stultiens did
some work on this, but this feature has not yet been merged back into Wine
(because of political reasons and lack of time), so this DLL type does not exist in
the official Wine at this time. In the meantime, the "builtin" DLL type gained
some of the features of elfdlls (such as dynamic loading), so it’s possible that
"elfdll" functionality will be folded into "builtin" at some point.

so

A native Unix .so file, with calling convention conversion thunks generated on
the fly as the library is loaded. This is mostly useful for libraries such as "glide"
that have exactly the same API on both Windows and Unix.

4.6.2. The [DllDefaults] section

DefaultLoadOrder

This specifies in what order Wine should search for available DLL types, if the
DLL in question was not found in the [DllOverrides] section.

4.6.3. The [DllPairs] section
At one time, there was a section called [DllPairs] in the default configuration file, but
this has been obsoleted because the pairing information has now been embedded into
Wine itself. (The purpose of this section was merely to be able to issue warnings if the
user attempted to pair codependent 16-bit/32-bit DLLs of different types.) If you still
have this in yourwine.conf or ~/.wine/config , you may safely delete it.

49

Chapter 4. Configuring Wine

4.6.4. The [DllOverrides] section
This section specifies how you want specific DLLs to be handled, in particular whether
you want to use "native" DLLs or not, if you have some from a real Windows
configuration. Because builtins do not mix seamlessly with native DLLs yet, certain
DLL dependencies may be problematic, but workarounds exist in Wine for many
popular DLL configurations. Also see WWN’s [16]Status Page to figure out how well
your favorite DLL is implemented in Wine.

It is of course also possible to override these settings by explictly using Wine’s--dll
command-line option (see the man page for details). Some hints for choosing your
optimal configuration (listed by 16/32-bit DLL pair):

krnl386, kernel32

Native versions of these will never work, so don’t try. Leave atbuiltin .

gdi, gdi32

Graphics Device Interface. No effort has been made at trying to run native GDI.
Leave atbuiltin .

user, user32

Window management and standard controls. It was possible to use Win95’s
native versions at some point (if all other DLLs that depend on it, such as
comctl32 and comdlg32, were also runnative). However, this is no longer
possible after the Address Space Separation, so leave atbuiltin .

ntdll

NT kernel API. Although badly documented, thenative version of this will
never work. Leave atbuiltin .

w32skrnl

Win32s (for Win3.x). Thenative version will probably never work. Leave at
builtin .

50

Chapter 4. Configuring Wine

wow32

Win16 support library for NT. Thenative version will probably never work.
Leave atbuiltin .

system

Win16 kernel stuff. Will never worknative . Leave atbuiltin .

display

Display driver. Definitely leave atbuiltin .

toolhelp

Tool helper routines. This is rarely a source of problems. Leave atbuiltin .

ver, version

Versioning. Seldom useful to mess with.

advapi32

Registry and security features. Trying thenative version of this may or may not
work.

commdlg, comdlg32

Common Dialogs, such as color picker, font dialog, print dialog, open/save
dialog, etc. It is safe to trynative .

commctrl, comctl32

Common Controls. This is toolbars, status bars, list controls, the works. It is safe
to try native .

shell, shell32

Shell interface (desktop, filesystem, etc). Being one of the most undocumented
pieces of Windows, you may have luck with thenative version, should you need
it.

51

Chapter 4. Configuring Wine

winsock, wsock32

Windows Sockets. Thenative version will not work under Wine, so leave at
builtin .

icmp

ICMP routines for wsock32. As with wsock32, leave atbuiltin .

mpr

Thenative version may not work due to thunking issues. Leave atbuiltin .

lzexpand, lz32

Lempel-Ziv decompression. Wine’sbuiltin version ought to work fine.

winaspi, wnaspi32

Advanced SCSI Peripheral Interface. Thenative version will probably never
work. Leave atbuiltin .

crtdll

C Runtime library. Thenative version will easily work better than Wine’s on
this one.

winspool.drv

Printer spooler. You are not likely to have more luck with thenative version.

ddraw

DirectDraw/Direct3D. Since Wine does not implement the DirectX HAL, the
native version will not work at this time.

dinput

DirectInput. Running thisnative may or may not work.

52

Chapter 4. Configuring Wine

dsound

DirectSound. It may be possible to run thisnative , but don’t count on it.

dplay/dplayx

DirectPlay. Thenative version ought to work best on this, if at all.

mmsystem, winmm

Multimedia system. Thenative version is not likely to work. Leave atbuiltin .

msacm, msacm32

Audio Compression Manager. Thebuiltin version works best, if you set
msacm.drv to the same.

msvideo, msvfw32

Video for Windows. It is safe (and recommended) to trynative .

mcicda.drv

CD Audio MCI driver.

mciseq.drv

MIDI Sequencer MCI driver (.MID playback).

mciwave.drv

Wave audio MCI driver (.WAVplayback).

mciavi.drv

AVI MCI driver (.AVI video playback). Best to usenative .

mcianim.drv

Animation MCI driver.

53

Chapter 4. Configuring Wine

msacm.drv

Audio Compression Manager. Set to same as msacm32.

midimap.drv

MIDI Mapper.

wprocs

This is a pseudo-DLL used by Wine for thunking purposes. Anative version of
this doesn’t exist.

4.7. Keyboard
Written by Ove Kåven <ovek@winehq.com >

(Extracted fromwine/documentation/keyboard)

Wine now needs to know about your keyboard layout. This requirement comes from a
need from many apps to have the correct scancodes available, since they read these
directly, instead of just taking the characters returned by the X server. This means that
Wine now needs to have a mapping from X keys to the scancodes these applications
expect.

On startup, Wine will try to recognize the active X layout by seeing if it matches any of
the defined tables. If it does, everything is alright. If not, you need to define it.

To do this, open the filewindows/x11drv/keyboard.c and take a look at the
existing tables. Make a backup copy of it, especially if you don’t use CVS.

What you really would need to do, is find out which scancode each key needs to
generate. Find it in themain_key_scan table, which looks like this:

static const int main_key_scan[MAIN_LEN] =
{
/* this is my (102-key) keyboard layout, sorry if it doesn’t quite match yours */

54

Chapter 4. Configuring Wine

0x29,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,
0x1E,0x1F,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x2B,
0x2C,0x2D,0x2E,0x2F,0x30,0x31,0x32,0x33,0x34,0x35,
0x56 /* the 102nd key (actually to the right of l-shift) */

};

Next, assign each scancode the characters imprinted on the keycaps. This was done
(sort of) for the US 101-key keyboard, which you can find near the top inkeyboard.c .
It also shows that if there is no 102nd key, you can skip that.

However, for most international 102-key keyboards, we have done it easy for you. The
scancode layout for these already pretty much matches the physical layout in the
main_key_scan , so all you need to do is to go through all the keys that generate
characters on your main keyboard (except spacebar), and stuff those into an appropriate
table. The only exception is that the 102nd key, which is usually to the left of the first
key of the last line (usuallyZ), must be placed on a separate line after the last line.

For example, my Norwegian keyboard looks like this

§ ! " # ¤ % & / () = ? ‘ Back-
| 1 2@ 3£ 4$ 5 6 7{ 8[9] 0} + \´ space

Tab Q W E R T Y U I O P Å ^
¨~

Enter
Caps A S D F G H J K L Ø Æ *
Lock ’

Sh- > Z X C V B N M ; : _ Shift
ift < , . -

Ctrl Alt Spacebar AltGr Ctrl

Note the 102nd key, which is the<> key, to the left ofZ. The character to the right of
the main character is the character generated byAltGr .

55

Chapter 4. Configuring Wine

This keyboard is defined as follows:

static const char main_key_NO[MAIN_LEN][4] =
{

"|§","1!","2\"@","3#£","4¤$","5%","6&","7/{","8([","9)]","0=}","+?","\\´",
"qQ","wW","eE","rR","tT","yY","uU","iI","oO","pP","åÅ","¨^~",
"aA","sS","dD","fF","gG","hH","jJ","kK","lL","øØ","æÆ","’*",
"zZ","xX","cC","vV","bB","nN","mM",",;",".:","-_",
"<>"

};

Except that " and \ needs to be quoted with a backslash, and that the 102nd key is on a
separate line, it’s pretty straightforward.

After you have written such a table, you need to add it to themain_key_tab[] layout
index table. This will look like this:

static struct {
WORD lang, ansi_codepage, oem_codepage;
const char (*key)[MAIN_LEN][4];

} main_key_tab[]={
...
...

{MAKELANGID(LANG_NORWEGIAN,SUBLANG_DEFAULT), 1252, 865, &main_key_NO},
...

After you have added your table, recompile Wine and test that it works. If it fails to
detect your table, try running

wine --debugmsg +key,+keyboard >& key.log

and look in the resultingkey.log file to find the error messages it gives for your
layout.

56

Chapter 4. Configuring Wine

Note that theLANG_* andSUBLANG_*definitions are ininclude/winnls.h , which
you might need to know to find out which numbers your language is assigned, and find
it in the debugmsg output. The numbers will be(SUBLANG * 0x400 + LANG) , so,
for example the combinationLANG_NORWEGIAN (0x14)andSUBLANG_DEFAULT

(0x1) will be (in hex)14 + 1*400 = 414 , so since I’m Norwegian, I could look for
0414 in the debugmsg output to find out why my keyboard won’t detect.

Once it works, submit it to the Wine project. If you use CVS, you will just have to do

cvs -z3 diff -u windows/x11drv/keyboard.c > layout.diff

from your main Wine directory, then submitlayout.diff to
<wine-patches@winehq.com > along with a brief note of what it is.

If you don’t use CVS, you need to do

diff -u the_backup_file_you_made windows/x11drv/keyboard.c > lay-
out.diff

and submit it as explained above.

If you did it right, it will be included in the next Wine release, and all the troublesome
applications (especially remote-control applications) and games that use scancodes will
be happily using your keyboard layout, and you won’t get those annoying fixme
messages either.

Good luck.

4.8. Dealing with Fonts

4.8.1. Fonts
Written by Alex Korobka <alex@aikea.ams.sunysb.edu >

57

Chapter 4. Configuring Wine

(Extracted fromwine/documentation/fonts)

Note: The fnt2bdf utility is included with Wine. It can be found in the tools

directory. Links to the other tools mentioned in this document can be found on
wine headquarters: http://www.winehq.com/tools.html

4.8.1.1. How To Convert Windows Fonts

If you have access to a Windows installation you should usefnt2bdf utility (found in
the tools directory) to convert bitmap fonts (VGASYS.FON, SSERIFE.FON, and
SERIFE.FON) into the format that the X Window System can recognize.

1. Extract bitmap fonts withfnt2bdf .

2. Convert.bdf files produced by Step 1 into.pcf files withbdftopcf.

3. Copy .pcf files to the font server directory which is usually
/usr/lib/X11/fonts/misc (you will probably need superuser privileges). If
you want to create a new font directory you will need to add it to the font path.

4. Runmkfontdir for the directory you copied fonts to. If you are already in X you
should runxset fp rehashto make X server aware of the new fonts.

5. Edit the~/.wine/config file to remove aliases for the fonts you’ve just
installed.

WINE can get by without these fonts but ’the look and feel’ may be quite different.
Also, some applications try to load their custom fonts on the fly (WinWord 6.0) and
since WINE does not implement this yet it instead prints out something like;

STUB: AddFontResource(SOMEFILE.FON)

58

Chapter 4. Configuring Wine

You can convert this file too. Note that.FON file may not hold any bitmap fonts and
fnt2bdf will fail if this is the case. Also note that although the above message will not
disappear WINE will work around the problem by using the font you extracted from
theSOMEFILE.FON. fnt2bdf will only work for Windows 3.1 fonts. It will not work for
TrueType fonts.

What to do with TrueType fonts? There are several commercial font tools that can
convert them to the Type1 format but the quality of the resulting fonts is far from
stellar. The other way to use them is to get a font server capable of rendering TrueType
(Caldera has one, there also is the freexfstt in Linux/X11/fonts on sunsite and
mirrors, if you’re on FreeBSD you can use the port in
/usr/ports/x11-servers/Xfstt . And there isxfsft which uses the freetype
library, seedocumentation/ttfserver).

However, there is a possibility of the native TrueType support via FreeType renderer in
the future (hint, hint :-)

4.8.1.2. How To Add Font Aliases To ~/.wine/config

Many Windows applications assume that fonts included in original Windows 3.1
distribution are always present. By default Wine creates a number of aliases that map
them on the existing X fonts:

Windows font ...is mapped to... X font
"MS Sans Serif" -> "-adobe-helvetica-"

"MS Serif" -> "-bitstream-charter-"

"Times New Roman" -> "-adobe-times-"

"Arial" -> "-adobe-helvetica-"

There is no default alias for the "System" font. Also, no aliases are created for the fonts
that applications install at runtime. The recommended way to deal with this problem is
to convert the missing font (see above). If it proves impossible, like in the case with
TrueType fonts, you can force the font mapper to choose a closely related X font by
adding an alias to the [fonts] section. Make sure that the X font actually exists (with

59

Chapter 4. Configuring Wine

xfontsel tool).

AliasN = [Windows font], [X font] <, optional "mask X font" flag>

Example:

Alias0 = System, --international-, subst
Alias1 = ...
...

Comments:

• There must be no gaps in the sequence{0, ..., N} otherwise all aliases after the
first gap won’t be read.

• Usually font mapper translates X font names into font names visible to Windows
programs in the following fashion:

X font ...will show up as... Extracted name
--international-... -> "International"

-adobe-helvetica-... -> "Helvetica"

-adobe-utopia-... -> "Utopia"

-misc-fixed-... -> "Fixed"

-... ->

-sony-fixed-... -> "Sony Fixed"

-... ->

Note that since-misc-fixed- and-sony-fixed- are different fonts Wine
modified the second extracted name to make sure Windows programs can distinguish
them because only extracted names appear in the font selection dialogs.

• "Masking" alias replaces the original extracted name so that in the example case we
will have the following mapping:

60

Chapter 4. Configuring Wine

X font ...is masked to... Extracted name
--international-... -> "System"

"Nonmasking" aliases are transparent to the user and they do not replace extracted
names.

Wine discards an alias when it sees that the native X font is available.

• If you do not have access to Windows fonts mentioned in the first paragraph you
should try to substitute the "System" font with nonmasking alias. Thexfontsel
application will show you the fonts available to X.

Alias.. = System, ...bold font without serifs

Also, some Windows applications request fonts without specifying the typeface name
of the font. Font table starts with Arial in most Windows installations, however X font
table starts with whatever is the first line in thefonts.dir . Therefore WINE uses the
following entry to determine which font to check first.

Example:

Default = -adobe-times-

Comments:

It is better to have a scalable font family (bolds and italics included) as the default
choice because mapper checks all available fonts until requested height and other
attributes match perfectly or the end of the font table is reached. Typical X installations
have scalable fonts in the../fonts/Type1 and../fonts/Speedo directories.

61

Chapter 4. Configuring Wine

4.8.1.3. How To Manage Cached Font Metrics

WINE stores detailed information about available fonts in the
~/.wine/.cachedmetrics file. You can copy it elsewhere and add this entry to the
[fonts] section in your~/.wine/config :

FontMetrics = <file with metrics>

If WINE detects changes in the X font configuration it will rebuild font metrics from
scratch and then it will overwrite~/.wine/.cachedmetrics with the new
information. This process can take a while.

4.8.1.4. Too Small Or Too Large Fonts

Windows programs may ask WINE to render a font with the height specified in points.
However, point-to-pixel ratio depends on the real physical size of your display (15",
17", etc...). X tries to provide an estimate of that but it can be quite different from the
actual size. You can change this ratio by adding the following entry to the [fonts]
section:

Resolution = <integer value>

In general, higher numbers give you larger fonts. Try to experiment with values in the
60 - 120 range. 96 is a good starting point.

4.8.1.5. "FONT_Init: failed to load ..." Messages On Startup

The most likely cause is a brokenfonts.dir file in one of your font directories. You
need to rerunmkfontdir to rebuild this file. Read its manpage for more information. If
you can’t runmkfontdir on this machine as you are not root, usexset -fp xxx to
remove the broken font path.

62

Chapter 4. Configuring Wine

4.8.2. Setting up a TrueType Font Server
written by ???

(Extracted fromwine/documentation/ttfserver)

Follow these instructions to set up a TrueType font server on your system.

1. Get freetype-1.0.full.tar.gz

2. Read docs, unpack, configure and install

3. Test the library, e.g.ftview 20 /dosc/win95/fonts/times

4. Getxfsft-beta1e.linux-i586

5. Install it and start it when booting, e.g. in an rc-script. The manpage forxfs
applies.

6. Follow the hints given by <williamc@dai.ed.ac.uk >

7. I got xfsft from http://www.dcs.ed.ac.uk/home/jec/progindex.html. I have it
running all the time. Here is/usr/X11R6/lib/X11/fs/config :

clone-self = on
use-syslog = off
catalogue = /c/windows/fonts
error-file = /usr/X11R6/lib/X11/fs/fs-errors
default-point-size = 120
default-resolutions = 75,75,100,100

Obviously/c/windows/fonts is where my Windows fonts on my Win95C:
drive live; could be e.g./mnt/dosC/windows/system for Win31. In
/c/windows/fonts/fonts.scale I have

14
arial.ttf -monotype-arial-medium-r-normal--0-0-0-0-p-0-iso8859-
1
arialbd.ttf -monotype-arial-bold-r-normal--0-0-0-0-p-0-iso8859-
1

63

Chapter 4. Configuring Wine

arialbi.ttf -monotype-arial-bold-o-normal--0-0-0-0-p-0-iso8859-
1
ariali.ttf -monotype-arial-medium-o-normal--0-0-0-0-p-0-iso8859-
1
cour.ttf -monotype-courier-medium-r-normal--0-0-0-0-p-0-iso8859-
1
courbd.ttf -monotype-courier-bold-r-normal--0-0-0-0-p-0-iso8859-
1
courbi.ttf -monotype-courier-bold-o-normal--0-0-0-0-p-0-iso8859-
1
couri.ttf -monotype-courier-medium-o-normal--0-0-0-0-p-0-iso8859-
1
times.ttf -monotype-times-medium-r-normal--0-0-0-0-p-0-iso8859-
1
timesbd.ttf -monotype-times-bold-r-normal--0-0-0-0-p-0-iso8859-
1
timesbi.ttf -monotype-times-bold-i-normal--0-0-0-0-p-0-iso8859-
1
timesi.ttf -monotype-times-medium-i-normal--0-0-0-0-p-0-iso8859-
1
symbol.ttf -monotype-symbol-medium-r-normal--0-0-0-0-p-0-microsoft-
symbol
wingding.ttf -microsoft-wingdings-medium-r-normal--0-0-0-0-p-0-
microsoft-symbol

In /c/windows/fonts/fonts.dir I have exactly the same.

In /usr/X11R6/lib/X11/XF86Config I have

FontPath "tcp/localhost:7100"

in front of the otherFontPath lines. That’s it! As an interesting by-product of
course, all those web pages which specify Arial come up in Arial in Netscape ...

8. Shut down X and restart (and debug errors you did while setting up everything).

9. Test with e.gxlsfont | grep arial

64

Chapter 4. Configuring Wine

Hope this helps...

4.9. Printing in Wine
How to print documents in Wine...

4.9.1. Printing
Written by Huw D M Davies <h.davies1@physics.ox.ac.uk >

(Extracted fromwine/documentation/printing)

Printing in Wine can be done in one of two ways:

1. Use an external windows 3.1 printer driver.

2. Use the builtin Wine Postscript driver (+ ghostscript to produce output for
non-postscript printers).

Note that at the moment WinPrinters (cheap, dumb printers that require the host
computer to explicitly control the head) will not work with their Windows printer
drivers. It is unclear whether they ever will.

4.9.1.1. External printer drivers

At present only 16 bit drivers will work (note that these include win9x drivers). To use
them, add

printer=on

to the [wine] section ofwine.conf (or ~/.wine/config). This letsCreateDC

proceed if its driver argument is a 16 bit driver. You will probably also need to add

65

Chapter 4. Configuring Wine

"TTEnable" = "0" "TTOnly" = "0"

to the [TrueType] section of~/.wine/config . The code for the driver interface is in
graphics/win16drv .

4.9.1.2. Builtin Wine PostScript driver

Enables printing of PostScript files via a driver built into Wine. See below for
installation instructions. The code for the PostScript driver is indlls/wineps/ .

The driver behaves as if it were a DRV file calledwineps.drv which at the moment is
built into Wine. Although it mimics a 16 bit driver it will work with both 16 and 32 bit
apps, just as win9x drivers do.

4.9.1.3. Spooling

Spooling is rather primitive. The [spooler] section ofwine.conf maps a port (e.g.
LPT1:) to a file or a command via a pipe. For example the following lines

"LPT1:" = "foo.ps" "LPT2:" = "|lpr"

map LPT1: to filefoo.ps and LPT2: to thelpr command. If a job is sent to an unlisted
port then a file is created with that port’s name e.g. for LPT3: a file called LPT3: would
be created.

There are now also virtual spool queues called LPR:printername, which send the data
to lpr -Pprintername . You do not need to specify those in the config file, they are
handled automatically bydlls/gdi/printdrv.c .

66

Chapter 4. Configuring Wine

4.9.2. The Wine PostScript Driver
Written by Huw D M Davies <h.davies1@physics.ox.ac.uk >

(Extracted fromwine/documentation/psdriver)

This allows Wine to generate PostScript files without needing an external printer driver.
Wine in this case uses the system provided postscript printer filters, which almost all
use ghostscript if necessary. Those should be configured during the original system
installation or by your system administrator.

4.9.2.1. Installation

4.9.2.1.1. Installation of CUPS printers

If you are using CUPS you do not need to configure .ini or registry entries, everything
is autodetected.

4.9.2.1.2. Installation of LPR /etc/printcap based printers

If your system is not yet using CUPS, it probably uses LPRng or a LPR based system
with configuration based on /etc/printcap.

If it does, your printers in/etc/printcap are scanned with a heuristic whether they
are PostScript capable printers and also configured mostly automatic.

Since WINE cannot find out what type of printer this is, you need to specify a PPD file
in the [ppd] section of~/.wine/config . Either use the shortcut name and make the
entry look:

[ppd]
"ps1" = "/usr/lib/wine/ps1.ppd"

Or you can specify a generic PPD file matching for all of the rest printers. A generic
PPD file can be found indocumenation/samples/generic.ppd .

67

Chapter 4. Configuring Wine

4.9.2.1.3. Installation of other printers

You do not need to this, if the above 2 sections apply, only if you have a special printer.

"Wine PostScript Driver" = "WINEPS,LPT1:"

to the [devices] section and

"Wine PostScript Driver" = "WINEPS,LPT1:,15,45"

to the [PrinterPorts] section ofwin.ini and to set it as the default printer also add

"device" = "Wine PostScript Driver,WINEPS,LPT1:"

to the [windows] section of~/.wine/config and ???[sic]

You also need to add certain entries to the registry. The easiest way to do this is to
customise the contents ofdocumentation/psdrv.reg (see below) and use the
Winelib programprograms/regapi/regapi. For example, if you have installed the Wine
source tree in/usr/src/wine , you could use the following series of commands:

• cp /usr/src/wine/documentation/psdrv.reg ~

• vi ~/psdrv.reg

• Edit the copy ofpsdrv.reg to suit your requirements. At a minimum, you must
specify a PPD file for each printer.

• regapi setValue < ~/psdrv.reg

4.9.2.1.4. Required Configuration for all printertypes

You will need Adobe Font Metric (AFM) files for the (type 1 PostScript) fonts that you
wish to use. You can get these from

68

Chapter 4. Configuring Wine

ftp://ftp.adobe.com/pub/adobe/type/win/all/afmfiles
(ftp://ftp.adobe.com/pub/adobe/type/win/all/afmfiles). The directoriesbase17 or
base35 are good places to start. Note that these are only the font metrics and not the
fonts themselves. At the moment the driver does not download additional fonts, so you
can only use fonts that are already present on the printer. (Actually, the driver can use
any font that is listed in the PPD file, for which it has an AFM file. If you use fonts that
arenot installed in your printer, or in Ghostscript, you will need to use some means of
embedding the font in the print job or downloading the font to the printer. Note also
that the driver does not yet properly list required fonts in its DSC comments, so a print
manager that depends on these comments to download the proper fonts to the printer
may not work properly.)

Then create a [afmdirs] section in yourwine.conf (or ~/.wine/config) and add a
line of the form

"dir<n>" = "/unix/path/name/"

for each directory that contains AFM files you wish to use.

There usually are a lot of afm files already on your system, within ghostscript, enscript,
a2ps or similar programs. You might check (and probably add) the following entries to
the [afmdirs] section.

"1" = "/usr/share/ghostscript/fonts"
"2" = "/usr/share/a2ps/afm"
"3" = "/usr/share/enscript"
"4" = "/usr/X11R6/lib/X11/fonts/Type1"

You also require a PPD file for your printer. This describes certain characteristics of the
printer such as which fonts are installed, how to select manual feed etc. Adobe also has
many of these on its website, have a look in
ftp://ftp.adobe.com/pub/adobe/printerdrivers/win/all/
(ftp://ftp.adobe.com/pub/adobe/printerdrivers/win/all/). See above for information on
configuring the driver to use this file.

69

Chapter 4. Configuring Wine

To enable colour printing you need to have the*ColorDevice entry in the PPD set to
true , otherwise the driver will generate greyscale.

Note that you need not setprinter=on in the [wine] section ofwine.conf , this
enables printing via external printer drivers and does not affect the builtin PostScript
driver.

If you’re lucky you should now be able to produce PS files from Wine!

I’ve tested it with win3.1 notepad/write, Winword6 and Origin4.0 and 32 bit apps such
as win98 wordpad, Winword97, Powerpoint2000 with some degree of success - you
should be able to get something out, it may not be in the right place.

4.9.2.2. TODO / Bugs

• Driver does read PPD files, but ignores all constraints and doesn’t let you specify
whether you have optional extras such as envelope feeders. You will therefore find a
larger than normal selection of input bins in the print setup dialog box. I’ve only
really tested ppd parsing on thehp4m6_v1.ppd file.

• No TrueType download.

• StretchDIBits uses level 2 PostScript.

• AdvancedSetup dialog box.

• Many partially implemented functions.

• ps.c is becoming messy.

• Notepad often starts text too far to the left depending on the margin settings.
However the win3.1pscript.drv (under wine) also does this.

• Probably many more...

Please contact me if you want to help so that we can avoid duplication.

Huw D M Davies <h.davies1@physics.ox.ac.uk >

70

Chapter 5. Running Wine
Written by John R. Sheets <jsheets@codeweavers.com >

5.1. How to run Wine
Wine is a very complicated piece of software with many ways to adjust how it runs.
With very few exceptions, you can activate the same set of features through the
configuration fileas you can with command-line parameters. In this chapter, we’ll
briefly discuss these parameters, and match them up with their corresponding
configuration variables.

You can invoke thewine --helpcommand to get a listing of all Wine’s command-line
parameters:

Usage: ./wine [options] program_name [arguments]

Options:
--debugmsg name Turn debugging-messages on or off
--dll name Enable or disable built-in DLLs
--dosver x.xx DOS version to imitate (e.g. 6.22)

Only valid with --winver win31
--help,-h Show this help message
--managed Allow the window manager to manage created windows
--version,-v Display the Wine version
--winver Version to imitate (win95,nt40,win31,nt2k,win98,nt351,win30,win20)

You can specify as many options as you want, if any. Typically, you will want to have
your configuration file set up with a sensible set of defaults; in this case, you can run
wine without explicitly listing any options. In rare cases, you might want to override
certain parameters on the command line.

71

Chapter 5. Running Wine

After the options, you should put the name of the file you wantwine to execute. If the
executable is in thePath parameter in the configuration file, you can simply give the
executable file name. However, if the executable is not inPath , you must give the full
path to the executable (in Windows format, not UNIX format!). For example, given a
Path of the following:

[wine]
"Path"="c:\windows;c:\windows\system;e:\;e:\test;f:\"

You could run the filec:\windows\system\foo.exe with:

$ wine foo.exe

However, you would have to run the filec:\myapps\foo.exe with this command:

$ wine c:\myapps\foo.exe

Finally, if you want to pass any parameters to your windows application, you can list
them at the end, just after the executable name. Thus, to run the imaginaryfoo.exe
Windows application with its/advanced mode parameter, while invoking Wine in
--managed mode, you would do something like this:

$ wine --managed foo.exe /advanced

In other words, options that affect Wine should comebeforethe Windows program
name, while options that affect the Windows program should comeafter it.

72

Chapter 5. Running Wine

5.2. Command-Line Options

5.2.1. --debugmsg [channels]
Wine isn’t perfect, and many Windows applications still don’t run without bugs under
Wine (but then, many of them don’t run without bugs under native Windows either!).
To make it easier for people to track down the causes behind each bug, Wine provides a
number ofdebug channelsthat you can tap into.

Each debug channel, when activated, will trigger logging messages to be displayed to
the console where you invokedwine. From there you can redirect the messages to a file
and examine it at your leisure. But be forewarned! Some debug channels can generate
incredible volumes of log messages. Among the most prolific offenders arerelay
which spits out a log message every time a win32 function is called,win which tracks
windows message passing, and of courseall which is an alias for every single debug
channel that exists. For a complex application, your debug logs can easily top 1 MB
and higher. Arelay trace can often generate more than 10 MB of log messages,
depending on how long you run the application. Logging does slow down Wine quite a
bit, so don’t use--debugmsg unless you really do want log files.

Within each debug channel, you can further specify amessage class, to filter out the
different severities of errors. The four message classes are:trace , fixme , warn ,
err .

To turn on a debug channel, use the formclass+channel . To turn it off, use
class-channel . To list more than one channel in the same--debugmsg option,
separate them with commas. For example, to requestwarn class messages in theheap
debug channel, you could invokewine like this:

$ wine --debugmsg warn+heap program_name

If you leave off the message class,wine will display messages from all four classes for
that channel:

$ wine --debugmsg +heap program_name

73

Chapter 5. Running Wine

If you wanted to see log messages for everything except the relay channel, you might
do something like this:

$ wine --debugmsg +all,-relay program_name

Here is a master list of all the debug channels and classes in Wine. More channels
might be added to (or subtracted from) later versions.

all accel advapi animate aspi atom avifile bit-
blt
bitmap caret cdrom class clipboard clipping combo comboex
comm commctrl commdlg console crtdll cursor date-
time dc
ddeml ddraw debug debugstr delayhlp dialog dinput dll
dosfs dosmem dplay driver dsound edit elfdll enhmetafile
event exec file fixup font gdi global graphics
header heap hook hotkey icmp icon imagehlp imagelist
imm int int10 int16 int17 int19 int21 int31
io ipaddress joystick key keyboard ldt list-
box listview
local mci mcianim mciavi mcicda mcimidi mciwave mdi
menu message metafile midi mmaux mmio mmsys mmtime
module monthcal mpr msacm msg msvideo native-
font nonclient
ntdll odbc ole opengl pager palette pidl print
process profile progress prop propsheet psapi psdrv ras
rebar reg region relay resource richedit scroll segment
seh selector sendmsg server setupapi setupx shell snoop
sound static statusbar storage stress string syscolor system
tab tape tapi task text thread thunk timer
toolbar toolhelp tooltips trackbar treeview ttydrv tweak typelib
updown ver virtual vxd wave win win16drv win32
wing wininet winsock winspool wnet x11 x11drv

74

Chapter 5. Running Wine

For more details about debug channels, check out the The Wine Developer’s Guide
(http://wine.codeweavers.com/docs/wine-devel/).

5.2.2. --dll

5.2.3. --dosver

5.2.4. --help

5.2.5. --managed

5.2.6. --version

5.2.7. --winver

75

Chapter 6. Finding and Reporting Bugs

6.1. How To Report A Bug
Written by Gerard Patel <>

(Extracted fromwine/documentation/bugreports)

There are two ways for you to make a bug report. One uses a simple perl script, and is
recommended if you don’t want to spend a lot of time producing the report. It is
designed for use by just about anyone, from the newest of newbies to advanced
developers. You can also make a bug report the hard way -- advanced developers will
probably prefer this.

6.1.1. The Easy Way

1. Your computermusthave perl on it for this method to work. To find out if you
have perl, runwhich perl. If it returns something like/usr/bin/perl , you’re in
business. Otherwise, skip on down to "The Hard Way". If you aren’t sure, just keep
on going. When you try to run the script, it will becomeveryapparent if you don’t
have perl.

2. Change directory to<dirs to wine>/tools

3. Type in./bug_report.pl and follow the directions.

4. Post a message to the comp.emulators.ms-windows.wine newsgroup with the
"Nice Formatted Report" attatched. If possible, upload the full debug output to a
web/ftp server and provide the address in your message.

76

Chapter 6. Finding and Reporting Bugs

6.1.2. The Hard Way
Some simple advice on making your bug report more useful (and thus more likely to
get answered and fixed):

1. Post as much information as possible.

This means we need more information than a simple "MS Word crashes whenever
I run it. Do you know why?" Include at least the following information:

• Version of Wine you’re using (runwine -v)
• Operating system you’re using, what distribution (if any), and what version
• Compiler and version (rungcc -v)
• Windows version, if installed
• Program you’re trying to run, its version number, and a URL for where the

program can be obtained (if available)
• Command line you used to start wine
• Any other information you think may be relevant or helpful, such as X server

version in case of X problems, libc version etc.

2. Re-run the program with the--debugmsg +relay option (i.e.,wine
--debugmsg +relay sol.exe).

If Wine crashes while running your program, it is important that we have this
information to have a chance at figuring out what is causing the crash. This can put
out quite a lot (several MB) of information, though, so it’s best to output it to a file.
When theWine-dbg> prompt appears, typequit .

You might want to try+relay,+snoop instead of+relay , but please note that
+snoop is pretty unstable and often will crash earlier than a simple+relay ! If
this is the case, then please useonly+relay !! A bug report with a crash in
+snoop code is useless in most cases!

To get the trace output, use the following commands:

77

Chapter 6. Finding and Reporting Bugs

all shells:

$ echo quit | wine -debugmsg +relay [other_options] program_name >& file-
name.out;

$ tail -n 100 filename.out > report_file

(This will print wine’s debug messages only to the file and then auto-quit. It’s
probably a good idea to use this command, since wine prints out so many
debug msgs that they flood the terminal, eating CPU.)

tcsh and other csh-like shells:

$ wine -debugmsg +relay [other_options] program_name |& tee file-
name.out;

$ tail -100 filename.out > report_file

bash and other sh-like shells:

$ wine -debugmsg +relay [other_options] program_name 2>&1 | tee file-
name.out;

$ tail -100 filename.out > report_file

report_file will now contain the last hundred lines of the debugging output,
including the register dump and backtrace, which are the most important pieces of
information. Please do not delete this part, even if you don’t understand what it
means.

3. Post your report to the newsgroup comp.emulators.ms-windows.wine

In your post, include all of the information from part 1), and insert the text from
the output file in part 2). If you do this, your chances of receiving some sort of
helpful response should be very good.

78

Chapter 6. Finding and Reporting Bugs

6.1.3. Questions and comments
If after reading this document there is something you couldn’t figure out, or think could
be explained better, or that should have been included, please post to
comp.emulators.ms-windows.wine to let us know how this document can be improved.

79

Wine Developer’s Guide

Wine Developer’s Guide

Table of Contents
I. Developing Wine... i

1. Compiling Wine...1
1.1. Compiling Wine..1

1.1.1. Tools required..1
1.1.2. Space required..1
1.1.3. Common problems...2
1.1.4. OS specific issues...2

2. Debugging Wine..1
2.1. Introduction...1

2.1.1. Processes and threads: in underlying OS and in Windows............1
2.1.2. Wine, debugging and WineDbg...2

2.2. WineDbg’s modes of invocation...2
2.2.1. Starting a process...3
2.2.2. Attaching..3
2.2.3. On exception..3
2.2.4. Quitting..4

2.3. Using the Wine Debugger...5
2.3.1. Crashes...5
2.3.2. Program hangs, nothing happens...8
2.3.3. Program reports an error with a Messagebox................................8
2.3.4. Disassembling programs:...8
2.3.5. Sample debugging session:..10
2.3.6. Debugging Tips..12
2.3.7. Some basic debugger usages:...15

2.4. Useful memory addresses...16
2.5. Configuration..17

2.5.1. Registry configuration..18
2.5.2. WineDbg configuration..19

2.5.2.1. Controlling when the debugger is entered........................20
2.5.2.2. Output handling..21
2.5.2.3. Context information..22

82

2.6. WineDbg Command Reference..23
2.6.1. Misc..23
2.6.2. Flow control...23
2.6.3. Breakpoints, watch points..24
2.6.4. Stack manipulation...24
2.6.5. Directory & source file manipulation..25
2.6.6. Displaying..25
2.6.7. Disassembly...26
2.6.8. Information on Wine’s internals..26
2.6.9. Memory (reading, writing, typing)..27
2.6.10. Expressions..28

2.7. Other debuggers..28
2.7.1. Using other Unix debuggers..28
2.7.2. Using other Windows debuggers...30
2.7.3. Main differences between winedbg and regular Unix debuggers30

2.8. Limitations..31
3. Documenting Wine..32

3.1. Writing Wine API Documentation...32
3.2. The Wine DocBook System..33

3.2.1. Writing Documentation with DocBook.......................................34
3.2.1.1. Terminology..34
3.2.1.2. The Document...36
3.2.1.3. Common Elements..38
3.2.1.4. Multiple SGML files...47

3.2.2. The SGML Environment...47
3.2.2.1. DSSSL Environment...47
3.2.2.2. XSLT Environment...47
3.2.2.3. SGML on Redhat..47
3.2.2.4. SGML on Debian..48
3.2.2.5. SGML on Other Distributions..48

3.2.3. PSGML Mode in Emacs..48
3.2.4. The DocBook Build System..49

3.2.4.1. Basic Infrastructure...49
3.2.4.2. Tweaking the DSSSL stylesheets......................................49

83

3.2.4.3. Generating docs for Wine web sites.................................49
4. Submitting Patches...50

4.1. Patch Format...50
4.2. Quality Assurance...50

5. Internationalization..51
5.1. Adding New Languages..51

6. Tools...54
6.1. bin2res...54

6.1.1. bin2res..54
6.1.2. Create binary files from an.rc file ...54
6.1.3. Create a.rc file from binaries..54
6.1.4. output ofbin2res ...55

II. Wine Architecture ...56

7. Overview..57
7.1. Basic Overview...57

7.1.1. Wine Overview..57
7.1.2. Win16 and Win32..58
7.1.3. The Wineserver..58
7.1.4. The Service Thread..59
7.1.5. Relays, Thunks, and DLL descriptors..60
7.1.6. Core and non-core DLLs...61

7.2. Module Overview...61
7.2.1. KERNEL Module..61
7.2.2. GDI Module...62

7.2.2.1. X Windows System interface..62
7.2.3. USER Module..63

7.2.3.1. Windowing subsystem..63
7.2.3.1.1. Visible region, clipping region and update region.64

7.2.3.2. Messaging subsystem..66
7.3. WINE/WINDOWS DLLs...70

7.3.1. Pros of Native DLLs..70
7.3.2. Cons of Native DLLs...71
7.3.3. Deciding Between Native and Built-In DLLs..............................71

84

7.3.4. Load Order for DLLs...72
7.3.5. Understanding What DLLs Do..73

8. Debug Logging..76
8.1. Debugging classes...76
8.2. Debugging channels..78
8.3. How to use it...79
8.4. Are we debugging?...80
8.5. In-memory messages..81
8.6. Resource identifiers...83
8.7. The--debugmsg command line option..84
8.8. Compiling Out Debugging Messages...86
8.9. A Few Notes on Style...86

9. COM/OLE in Wine..90
9.1. COM/OLE Architecture in Wine..90
9.2. Using Binary OLE components in Wine..90
9.3. Writing OLE Components for Wine...90

9.3.1. Macros to define a COM interface...90
9.3.2. Bindings in C...93
9.3.3. Bindings in C++...95
9.3.4. Implementing a COM interface...96

10. Wine and OpenGL...99
10.1. What is needed to have OpenGL support in Wine................................99

10.1.1. Header files..99
10.1.2. OpenGL library thread-safety..100
10.1.3. OpenGL library itself...100
10.1.4. glXGetProcAddressARB function...100

10.2. How to configure...101
10.3. How it all works..101

10.3.1. The Windowing system integration...102
10.3.2. The thunks..102

10.4. Known problems - shortcomings..103
10.4.1. Missing GLU32.DLL...104
10.4.2. OpenGL not detected at configure time...................................104
10.4.3. When running an OpenGL application, the screen flickers.....104

85

10.4.4. Wine gives me the following error message :..........................104
10.4.5.libopengl32.so is built but it is still not working...............105

11. The Wine Build System...107
12. Wine Builtin DLLs Overview..108

12.1. Common Controls...108
12.1.1. 1. Introduction..108
12.1.2. 2. General Information...108

12.1.2.1. 2.1 Structure sizes of different common control versions
108

12.1.3. 3. Controls..110
12.1.3.1. 3.1 Animation Control..110
12.1.3.2. 3.2 Combo Box Ex Control..111
12.1.3.3. 3.3 Date and Time Picker Control................................111
12.1.3.4. 3.4 Drag List Box Control..111
12.1.3.5. 3.5 Flat Scroll Bar Control..112
12.1.3.6. 3.6 Header Control..112
12.1.3.7. 3.7 Hot Key Control..113
12.1.3.8. 3.8 Image List (no control)...113
12.1.3.9. 3.9 IP Address Control..113
12.1.3.10. 3.10 List View Control..114
12.1.3.11. 3.11 Month Calendar Control.....................................114
12.1.3.12. 3.12 Native font control..115
12.1.3.13. 3.13 Pager Control..115
12.1.3.14. 3.14 Progress Bar Control...116
12.1.3.15. 3.15 Property Sheet...116
12.1.3.16. 3.16 Rebar Control (Cool Bar)....................................116
12.1.3.17. 3.17 Status Bar Control...117
12.1.3.18. 3.18 Tab Control...117
12.1.3.19. 3.19 Toolbar Control...117
12.1.3.20. 3.20 Tooltip Control..118
12.1.3.21. 3.21 Trackbar Control...118
12.1.3.22. 3.22 Tree View Control...118
12.1.3.23. 3.23 Updown Control..119

12.1.4. 4. Additional Information..119

86

12.1.5. 5. Undocumented features...119
12.1.5.1. 5.1 Dynamic Storage Array (DSA)...............................120
12.1.5.2. 5.2 Dynamic Pointer Array (DPA)................................120
12.1.5.3. 5.3 "Most Recently Used" - List (MRU)......................120
12.1.5.4. 5.4 MenuHelp...120
12.1.5.5. 5.5 GetEffectiveClientRect...121
12.1.5.6. 5.6 ShowHideMenuCtl...121
12.1.5.7. 5.7 Other undocumented functions...............................121

12.1.6. 6. Epilogue...121
13. Wine and Multimedia...122

13.1. Overview...122
13.2. Low level layers..122

13.2.1. (Wave form) Audio..123
13.2.1.1. OSS implementation...123
13.2.1.2. Other sub systems...123

13.2.2. MIDI..124
13.2.2.1. OSS driver...124
13.2.2.2. Other sub systems...125

13.2.3. Mixer..125
13.2.3.1. OSS implementation...125
13.2.3.2. Other sub systems...125

13.2.4. Aux...126
13.2.4.1. OSS driver...126

13.2.5. Wine OSS...126
13.2.6. Joystick..127
13.2.7. Wave mapper (msacm.drv)..127

13.2.7.1. Built-in..127
13.2.7.2. Native..128

13.2.8. MIDI mapper...128
13.2.8.1. Built-in..128
13.2.8.2. Native..129

13.3. Mid level drivers (MCI)..129
13.3.1. CDAUDIO...129

13.3.1.1. Built-in..130

87

13.3.1.2. Native..130
13.3.2. MCIWAVE...130

13.3.2.1. Built-in..131
13.3.2.2. Native..131

13.3.3. MCISEQ (MIDI sequencer)...131
13.3.3.1. Built-in..131
13.3.3.2. Native..132

13.3.4. MCIANIM...132
13.3.4.1. Built-in..132
13.3.4.2. Native..133

13.3.5. MCIAVI ...133
13.3.5.1. Built-in..133
13.3.5.2. Native..133

13.4. High level layers...133
13.4.1. MCI skeleton..134
13.4.2. MCI multi-tasking..135
13.4.3. Timers..136
13.4.4. MMIO..136
13.4.5. sndPlayXXX functions..136

13.5. Multimedia configuration..136
13.5.1. Drivers..136
13.5.2. MCI..137
13.5.3. Low level drivers..137
13.5.4. Midi mapper...138
13.5.5. ACM...139
13.5.6. VIDC..139

13.6. Multimedia architecture..139
13.6.1. Windows 9x multimedia architecture......................................139
13.6.2. Wine multimedia architecture..141

13.7. MS ACM Dlls...142
13.7.1. Contents...142
13.7.2. Status..142
13.7.3. Caching..143

III. Advanced Topics..144

88

14. Low-level Implementation...145
14.1. Builtin DLLs...145

14.1.1. 1. The LibMain function..145
14.1.2. 2. Using functions from other built-in DLL’s..........................145
14.1.3. 3. Getting resources from a*.rc file linked to the DLL........147

14.2. Accelerators..147
14.3. File Handles..148
14.4. Doing A Hardware Trace In Wine..149

15. Porting Wine to new Platforms..156
15.1. Porting...156

15.1.1. What is this?...156
15.1.2. Why #ifdef MyOS is probably a mistake................................156
15.1.3. MyOS doesn’t have thefoo.h header!...................................157
15.1.4. MyOS doesn’t have thebar function!.....................................158

15.2. Running & Compiling WINE in OS/2..159
16. Consoles in Wine...162

16.1. Consoles..162
16.1.1. Console - First Pass..162
16.1.2. BUGS...163
16.1.3. Experimentation...163
16.1.4. DOS (Generic) Console Support...164

16.1.4.1. I. Command Line Configuration...................................164
16.1.4.2. II.wine.conf Configuration.......................................165
16.1.4.3. III. Terminal Types..166

17. How to do regression testing using Cvs...168

89

I. Developing Wine
Table of Contents

1. Compiling Wine ...1

2. Debugging Wine...1

3. Documenting Wine...32

4. Submitting Patches..50

5. Internationalization ...51

6. Tools...54

Chapter 1. Compiling Wine
How to compile wine, and problems that may arise...

1.1. Compiling Wine

1.1.1. Tools required

• gcc -- 2.7.x required (Wine uses attribute stdcall). Versions earlier than 2.7.2.3 barf
on shellord.c -- compile without optimizing for that file. In addition EGCS 1.1.x and
GCC 2.95.x are reported to work fine.

• flex >= 2.5.1 (required for the debugger and wrc, and lex won’t do)

• bison (also required for debugger. Don’t know whether BSD yacc would work.)

• X11 libs and include files

• Xpm libs and include files

• texinfo >= 3.11 (optional, to compile the documentation.)

• autoconf (if you want to remake configure, which is not normally required)

• XF86DGA extension (optional, detected by configure, needed for DirectX support)

• Open Sound System (optional, detected by configure, for sound support)

The Red Hat RPMs are gcc-XXX, flex-XXX, XFree86-devel-XXX, xpm-XXX, and
xpm-devel, where XXX is the version number.

1

Chapter 1. Compiling Wine

1.1.2. Space required
You also need about 230 MB of available disk space for compilation. The compiled
libwine.so binary takes around 5 MB of disk space, which can be reduced to about 1
MB by stripping (’strip wine’). Stripping is not recommended, however, as you can’t
submit proper crash reports with a stripped binary any more.

1.1.3. Common problems
If you get a repeatable sig11 compiling shellord.c, thunk.c or other files, try compiling
just that file without optimization. Then you should be able to finish the build.

1.1.4. OS specific issues

• FreeBSD -- In order to run Wine, the FreeBSD kernel needs to be compiled with

options USER_LDT

options SYSVSHM

options SYSVSEM

options SYSVMSG

If you need help, read the chapter "Building and Installing a Custom Kernel
(http://www.freebsd.org/handbook/kernelconfig-building.html)" in the "FreeBSD
handbook (http://www.freebsd.org/handbook/). You’ll need to be running FreeBSD
3.x or later.

• SCO Unixware, Openserver -- UW port is supported by SCO.

• OS/2 -- not a complete port. See Odin (http://odin.netlabs.org/ProjectAbout.phtml)
for a project which uses some Wine code.

• Solaris x86 2.x -- Needs GNU toolchain (gcc, gas, flex as above, yacc may work) to

2

Chapter 1. Compiling Wine

compile, seems functional (980215).

• DGUX, HP, Irix, or other Unixes; non-intel Linux. No ports have been seriously
attempted. For non-intel Unixes, only a winelib port is relevant. Alignment may be a
problem.

• Macintosh/Rhapsody/BeOS -- no ports have been attempted.

3

Chapter 2. Debugging Wine

2.1. Introduction
Written by Eric Pouech <Eric.Pouech@wanadoo.fr > (Last updated: 6/14/2000)

(Extracted fromwine/documentation/winedbg)

2.1.1. Processes and threads: in underlying OS and in
Windows

Before going into the depths of debugging in Wine, here’s a small overview of process
and thread handling in Wine. It has to be clear that there are two different beasts:
processes/threads from the Unix point of view and processes/threads from a Windows
point of view.

Each Windows’ thread is implemented as a Unix process (under Linux using theclone

syscall), meaning that all threads of a same Windows’ process share the same (unix)
address space.

In the following:

• W-process means a process in Windows’ terminology

• U-process means a process in Unix’ terminology

• W-thread means a thread in Windows’ terminology

A W-process is made of one or severalW-threads . EachW-thread is mapped to
one and only oneU-process . All U-processes of a sameW-process share the
same address space.

Each Unix process can be identified by two values:

1

Chapter 2. Debugging Wine

• the Unix process id (upid in the following)

• the Windows’s thread id (tid)

Each Windows’ process has also a Windows’ process id (wpid in the following). It
must be clear thatupid andwpid are different and shall not be used instead of the
other.

Wpid andtid are defined (Windows) system wide. They must not be confused with
process or thread handles which, as any handle, is an indirection to a system object (in
this case process or thread). A same process can have several different handles on the
same kernel object. The handles can be defined as local (the values is only valid in a
process), or system wide (the same handle can be used by anyW-process).

2.1.2. Wine, debugging and WineDbg
When talking of debugging in Wine, there are at least two levels to think of:

• the Windows’ debugging API.

• the Wine integrated debugger, dubbedWineDbg.

Wine implements most of the Windows’ debugging API (the part in KERNEL32, not
the one inIMAGEHLP.DLL), and allows any program (emulated or Winelib) using that
API to debug aW-process .

WineDbg is a Winelib application making use of this API to allow debugging both any
Wine or Winelib applications as well as Wine itself (kernel and all DLLs).

2

Chapter 2. Debugging Wine

2.2. WineDbg’s modes of invocation

2.2.1. Starting a process
Any application (either a Windows’ native executable, or a Winelib application) can be
run throughWineDbg. Command line options and tricks are the same as for wine:

winedbg telnet.exe
winedbg "hl.exe -windowed"

2.2.2. Attaching
WineDbg can also be launched without any command line argument:WineDbg is
started without any attached process. You can get a list of runningW-processes (and
their wpid ’s) using thewalk processcommand, and then, with theattach command,
pick up thewpid of theW-process you want to debug. This is (for now) a neat feature
for the following reasons:

• you can debug an already started application

2.2.3. On exception
When something goes wrong, Windows tracks this as an exception. Exceptions exist
for segmentation violation, stack overflow, division by zero...

When an exception occurs, Wine checks if theW-process is debugged. If so, the
exception event is sent to the debugger, which takes care of it: end of the story. This
mechanism is part of the standard Windows’ debugging API.

If the W-process is not debugged, Wine tries to launch a debugger. This debugger
(normallyWineDbg, see III Configuration for more details), at startup, attaches to the

3

Chapter 2. Debugging Wine

W-process which generated the exception event. In this case, you are able to look at
the causes of the exception, and either fix the causes (and continue further the
execution) or dig deeper to understand what went wrong.

If WineDbg is the standard debugger, thepassandcont commands are the two ways to
let the process go further for the handling of the exception event.

To be more precise on the way Wine (and Windows) generates exception events, when
a fault occurs (segmentation violation, stack overflow...), the event is first sent to the
debugger (this is known as a first chance exception). The debugger can give two
answers:

continue:

the debugger had the ability to correct what’s generated the exception, and is now
able to continue process execution.

pass:

the debugger couldn’t correct the cause of the first chance exception. Wine will
now try to walk the list of exception handlers to see if one of them can handle the
exception. If no exception handler is found, the exception is sent once again to the
debugger to indicate the failure of the exception handling.

Note: since some of Wine’s code uses exceptions and try/catch blocks to
provide some functionality, WineDbg can be entered in such cases with segv
exceptions. This happens, for example, with IsBadReadPtr function. In that case,
the pass command shall be used, to let the handling of the exception to be done
by the catch block in IsBadReadPtr .

2.2.4. Quitting
Unfortunately, Windows doesn’t provide a detach kind of API, meaning that once you
started debugging a process, you must do so until the process dies. Killing (or

4

Chapter 2. Debugging Wine

stopping/aborting) the debugger will also kill the debugged process. This will be true
for any Windows’ debugging API compliant debugger, starting withWineDbg.

2.3. Using the Wine Debugger
Written by Marcus Meissner <Marcus.Meissner@caldera.de >, additions
welcome.

(Extracted fromwine/documentation/debugging)

This file describes where to start debugging Wine. If at any point you get stuck and
want to ask for help, please read the filedocumentation/bugreports for
information on how to write useful bug reports.

2.3.1. Crashes
These usually show up like this:

|Unexpected Windows program segfault - opcode = 8b
|Segmentation fault in Windows program 1b7:c41.
|Loading symbols from ELF file /root/wine/wine...
|....more Loading symbols from ...
|In 16 bit mode.
|Register dump:
| CS:01b7 SS:016f DS:0287 ES:0000
| IP:0c41 SP:878a BP:8796 FLAGS:0246
| AX:811e BX:0000 CX:0000 DX:0000 SI:0001 DI:ffff
|Stack dump:
|0x016f:0x878a: 0001 016f ffed 0000 0000 0287 890b 1e5b
|0x016f:0x879a: 01b7 0001 000d 1050 08b7 016f 0001 000d
|0x016f:0x87aa: 000a 0003 0004 0000 0007 0007 0190 0000
|0x016f:0x87ba:
|
|0050: sel=0287 base=40211d30 limit=0b93f (bytes) 16-bit rw-

5

Chapter 2. Debugging Wine

|Backtrace:
|0 0x01b7:0x0c41 (PXSRV_FONGETFACENAME+0x7c)
|1 0x01b7:0x1e5b (PXSRV_FONPUTCATFONT+0x2cd)
|2 0x01a7:0x05aa
|3 0x01b7:0x0768 (PXSRV_FONINITFONTS+0x81)
|4 0x014f:0x03ed (PDOXWIN_@SQLCURCB$Q6CBTYPEULN8CBSCTYPE+0x1b1)
|5 0x013f:0x00ac
|
|0x01b7:0x0c41 (PXSRV_FONGETFACENAME+0x7c): movw %es:0x38(%bx),%dx

Steps to debug a crash. You may stop at any step, but please report the bug and provide
as much of the information gathered to the newsgroup or the relevant developer as
feasible.

1. Get the reason for the crash. This is usually an access to an invalid selector, an
access to an out of range address in a valid selector, popping a segmentregister
from the stack or the like. When reporting a crash, report thiswholecrashdump
even if it doesn’t make sense to you.

(In this case it is access to an invalid selector, for %es is0000 , as seen in the
register dump).

2. Determine the cause of the crash. Since this is usually a primary/secondary
reaction to a failed or misbehaving Wine function, rerun Wine with-debugmsg
+relay added to the commandline. This will generate quite a lot of output, but
usually the reason is located in the last call(s). Those lines usually look like this:

|Call KERNEL.90: LSTRLEN(0227:0692 "text") ret=01e7:2ce7 ds=0227
^^^^^^^^^ ^ ^^^^^^^^^ ^^^^^^ ^^^^^^^^^ ^^^^
| | | | | |Datasegment
| | | | |Return address
| | | |textual parameter
| | |
| | |Argument(s). This one is a win16 seg-

mented pointer.

6

Chapter 2. Debugging Wine

| |Function called.
|The module, the function is called in. In this case it is KERNEL.

|Ret KERNEL.90: LSTRLEN() retval=0x0004 ret=01e7:2ce7 ds=0227
^^^^^^

|Returnvalue is 16 bit and has the value 4.

3. If you have found a misbehaving function, try to find out why it misbehaves. Find
the function in the source code. Try to make sense of the arguments passed.
Usually there is aTRACE(<channel>,"(...)\n"); at the beginning of the
function. Rerun wine with-debugmsg +xyz,+relay added to the
commandline.

4. Additional information on how to debug using the internal debugger can be found
in debugger/README .

5. If this information isn’t clear enough or if you want to know more about what’s
happening in the function itself, try running wine with-debugmsg +all , which
dumps ALL included debug information in wine.

6. If even that isn’t enough, add more debug output for yourself into the functions
you find relevant. Seedocumentation/debug-msgs . You might also try to run
the program ingdb instead of using the WINE-debugger. If you do that, use
handle SIGSEGV nostop noprint to disable the handling of seg faults
insidegdb (needed for Win16). If you don’t use the--desktop or --managed
option, start the WINE process with--sync , or chances are good to get X into an
unusable state.

7. You can also set a breakpoint for that function. Start wine with the--debug
option added to the commandline. After loading the executable wine will enter the
internal debugger. Usebreak KERNEL_LSTRLEN (replace by function you
want to debug, CASE IS RELEVANT) to set a breakpoint. Then usecontinue to
start normal program-execution. Wine will stop if it reaches the breakpoint. If the
program isn’t yet at the crashing call of that function, usecontinueagain until you
are about to enter that function. You may now proceed with single-stepping the

7

Chapter 2. Debugging Wine

function until you reach the point of crash. Use the other debugger commands to
print registers and the like.

2.3.2. Program hangs, nothing happens
Switch to UNIX shell, get the process-ID usingps -a | grep wine, and do akill -HUP
<pid> (without the < and >). Wine will then enter its internal debugger and you can
proceed as explained above. Also, you can use--debug switch and then you can get
into internal debugger by pressingCtrl -C in the terminal where you run Wine.

2.3.3. Program reports an error with a Messagebox
Sometimes programs are reporting failure using more or less nondescript
messageboxes. We can debug this using the same method as Crashes, but there is one
problem... For setting up a message box the program also calls Wine producing huge
chunks of debug code.

Since the failure happens usually directly before setting up the Messagebox you can
start wine with--debug added to the commandline, set a breakpoint at
MessageBoxA (called by win16 and win32 programs) and proceed withcontinue.
With --debugmsg +all Wine will now stop directly before setting up the
Messagebox. Proceed as explained above.

You can also run wine usingwine -debugmsg +relay program.exe 2>&1 | less -iand
in lesssearch for “MessageBox”.

2.3.4. Disassembling programs:
You may also try to disassemble the offending program to check for undocumented
features and/or use of them.

The best, freely available, disassembler for Win16 programs is Windows Codeback,
archivenamewcbxxx.zip , which usually can be found in theCica-Mirror

8

Chapter 2. Debugging Wine

subdirectory on the WINE ftpsites. (SeeANNOUNCE).

Disassembling win32 programs is possible using Windows Disassembler 32,
archivename something likew32dsm87.zip (or similar) on ftp.winsite.com and
mirrors. The shareware version does not allow saving of disassembly listings. You can
also use the newer (and in the full version better) Interactive Disassembler (IDA) from
the ftp sites mentioned at the end of the document. Understanding disassembled code is
mostly a question of exercise.

Most code out there uses standard C function entries (for it is usually written in C).
Win16 function entries usually look like that:

push bp
mov bp, sp
... function code ..
retf XXXX <--------- XXXX is number of bytes of arguments

This is aFARfunction with no local storage. The arguments usually start at[bp+6]

with increasing offsets. Note, that[bp+6] belongs to therightmostargument, for
exported win16 functions use the PASCAL calling convention. So, if we use
strcmp(a,b) with a andb both 32 bit variablesb would be at[bp+6] anda at
[bp+10] .

Most functions make also use of local storage in the stackframe:

enter 0086, 00
... function code ...
leave
retf XXXX

This does mostly the same as above, but also adds0x86 bytes of stackstorage, which is
accessed using[bp-xx] . Before calling a function, arguments are pushed on the stack
using something like this:

push word ptr [bp-02] <- will be at [bp+8]
push di <- will be at [bp+6]

9

Chapter 2. Debugging Wine

call KERNEL.LSTRLEN

Here first the selector and then the offset to the passed string are pushed.

2.3.5. Sample debugging session:
Let’s debug the infamous WordSHARE.EXEmessagebox:

|marcus@jet $ wine winword.exe
| +---+
| | ! You must leave Windows and load SHARE.EXE|
| | before starting Word. |
| +---+

|marcus@jet $ wine winword.exe -debugmsg +relay -debug
|CallTo32(wndproc=0x40065bc0,hwnd=000001ac,msg=00000081,wp=00000000,lp=00000000)
|Win16 task ’winword’: Breakpoint 1 at 0x01d7:0x001a
|CallTo16(func=0127:0070,ds=0927)
|Call WPROCS.24: TASK_RESCHEDULE() ret=00b7:1456 ds=0927
|Ret WPROCS.24: TASK_RESCHEDULE() retval=0x8672 ret=00b7:1456 ds=0927
|CallTo16(func=01d7:001a,ds=0927)
| AX=0000 BX=3cb4 CX=1f40 DX=0000 SI=0000 DI=0927 BP=0000 ES=11f7
|Loading symbols: /home/marcus/wine/wine...
|Stopped on breakpoint 1 at 0x01d7:0x001a
|In 16 bit mode.
|Wine-dbg>break MessageBoxA <---- Set Breakpoint
|Breakpoint 2 at 0x40189100 (MessageBoxA [msgbox.c:190])
|Wine-dbg>c <---- Continue
|Call KERNEL.91: INITTASK() ret=0157:0022 ds=08a7
| AX=0000 BX=3cb4 CX=1f40 DX=0000 SI=0000 DI=08a7 ES=11d7 EFL=00000286
|CallTo16(func=090f:085c,ds=0dcf,0x0000,0x0000,0x0000,0x0000,0x0800,0x0000,0x0000,0x0dcf)
|... <----- Much debugoutput
|Call KERNEL.136: GETDRIVETYPE(0x0000) ret=060f:097b ds=0927

^^^^^^ Drive 0 (A:)

10

Chapter 2. Debugging Wine

|Ret KERNEL.136: GETDRIVETYPE() retval=0x0002 ret=060f:097b ds=0927
^^^^^^ DRIVE_REMOVEABLE

(It is a floppy diskdrive.)

|Call KERNEL.136: GETDRIVETYPE(0x0001) ret=060f:097b ds=0927
^^^^^^ Drive 1 (B:)

|Ret KERNEL.136: GETDRIVETYPE() retval=0x0000 ret=060f:097b ds=0927
^^^^^^ DRIVE_CANNOTDETERMINE

(I don’t have drive B: assigned)

|Call KERNEL.136: GETDRIVETYPE(0x0002) ret=060f:097b ds=0927
^^^^^^^ Drive 2 (C:)

|Ret KERNEL.136: GETDRIVETYPE() retval=0x0003 ret=060f:097b ds=0927
^^^^^^ DRIVE_FIXED

(specified as a harddisk)

|Call KERNEL.97: GETTEMPFILENAME(0x00c3,0x09278364"doc",0x0000,0927:8248) ret=060f:09b1 ds=0927
^^^^^^ ^^^^^ ^^^^^^^^^
| | |buffer for fname
| |temporary name ~docXXXX.tmp
|Force use of Drive C:.

|Warning: GetTempFileName returns ’C:~doc9281.tmp’, which doesn’t seem to be writeable.
|Please check your configuration file if this generates a failure.

Whoops, it even detects that something is wrong!

|Ret KERNEL.97: GETTEMPFILENAME() retval=0x9281 ret=060f:09b1 ds=0927
^^^^^^ Temporary storage ID

|Call KERNEL.74: OPENFILE(0x09278248"C:~doc9281.tmp",0927:82da,0x1012) ret=060f:09d8 ds=0927
^^^^^^^^^^^^^^^^ ^^^^^^^^^ ^^^^^^^
|filename |OFSTRUCT |open mode:

OF_CREATE|OF_SHARE_EXCLUSIVE|OF_READWRITE

11

Chapter 2. Debugging Wine

This fails, since myC: drive is in this case mounted readonly.

|Ret KERNEL.74: OPENFILE() retval=0xffff ret=060f:09d8 ds=0927
^^^^^^ HFILE_ERROR16, yes, it failed.

|Call USER.1: MESSAGEBOX(0x0000,0x09278376"Sie mussen Windows ver-
lassen und SHARE.EXE laden bevor Sie Word starten.",0x00000000,0x1030) ret=060f:084f ds=0927

And MessageBox’ed.

|Stopped on breakpoint 2 at 0x40189100 (MessageBoxA [msgbox.c:190])
|190 { <- the sourceline
In 32 bit mode.
Wine-dbg>

The code seems to find a writeable harddisk and tries to create a file there. To work
around this bug, you can defineC: as a networkdrive, which is ignored by the code
above.

2.3.6. Debugging Tips
Here are some useful debugging tips, added by Andreas Mohr:

• If you have a program crashing at such an early loader phase that you can’t use the
Wine debugger normally, but Wine already executes the program’s start code, then
you may use a special trick. You should do a

wine --debugmsg +relay program

to get a listing of the functions the program calls in its start function. Now you do a

wine --debug winfile.exe

12

Chapter 2. Debugging Wine

This way, you get intoWine-dbg. Now you can set a breakpoint on any function the
program calls in the start function and just typec to bypass the eventual calls of
Winfile to this function until you are finally at the place where this function gets
called by the crashing start function. Now you can proceed with your debugging as
usual.

• If you try to run a program and it quits after showing an error messagebox, the
problem can usually be identified in the return value of one of the functions executed
beforeMessageBox() . That’s why you should re-run the program with e.g.

wine --debugmsg +relay <program name> &>relmsg

Then do amore relmsgand search for the last occurrence of a call to the string
"MESSAGEBOX". This is a line like

Call USER.1: MESSAGEBOX(0x0000,0x01ff1246 "Runtime error 219 at 0004:1056.",0x00000000,0x1010) ret=01f7:2160 ds=01ff

In my example the lines before the call toMessageBox() look like that:

Call KERNEL.96: FREELIBRARY(0x0347) ret=01cf:1033 ds=01ff
CallTo16(func=033f:0072,ds=01ff,0x0000)
Ret KERNEL.96: FREELIBRARY() retval=0x0001 ret=01cf:1033 ds=01ff
Call KERNEL.96: FREELIBRARY(0x036f) ret=01cf:1043 ds=01ff
CallTo16(func=0367:0072,ds=01ff,0x0000)
Ret KERNEL.96: FREELIBRARY() retval=0x0001 ret=01cf:1043 ds=01ff
Call KERNEL.96: FREELIBRARY(0x031f) ret=01cf:105c ds=01ff
CallTo16(func=0317:0072,ds=01ff,0x0000)
Ret KERNEL.96: FREELIBRARY() retval=0x0001 ret=01cf:105c ds=01ff
Call USER.171: WINHELP(0x02ac,0x01ff05b4 "COMET.HLP",0x0002,0x00000000) ret=01cf:1070 ds=01ff
CallTo16(func=0117:0080,ds=01ff)
Call WPROCS.24: TASK_RESCHEDULE() ret=00a7:0a2d ds=002b
Ret WPROCS.24: TASK_RESCHEDULE() retval=0x0000 ret=00a7:0a2d ds=002b
Ret USER.171: WINHELP() retval=0x0001 ret=01cf:1070 ds=01ff
Call KERNEL.96: FREELIBRARY(0x01be) ret=01df:3e29 ds=01ff
Ret KERNEL.96: FREELIBRARY() retval=0x0000 ret=01df:3e29 ds=01ff
Call KERNEL.52: FREEPROCINSTANCE(0x02cf00ba) ret=01f7:1460 ds=01ff

13

Chapter 2. Debugging Wine

Ret KERNEL.52: FREEPROCINSTANCE() retval=0x0001 ret=01f7:1460 ds=01ff
Call USER.1: MESSAGEBOX(0x0000,0x01ff1246 "Runtime error 219 at 0004:1056.",0x00000000,0x1010) ret=01f7:2160 ds=01ff

I think that the call toMessageBox() in this example isnotcaused by a wrong result
value of some previously executed function (it’s happening quite often like that), but
instead the messagebox complains about a runtime error at0x0004:0x1056 .

As the segment value of the address is only4, I think that that is only an internal
program value. But the offset address reveals something quite interesting: Offset
1056 is veryclose to the return address ofFREELIBRARY() :

Call KERNEL.96: FREELIBRARY(0x031f) ret=01cf:105c ds=01ff
^^^^

Provided that segment0x0004 is indeed segment0x1cf , we now we can use IDA
(available at ftp://ftp.uni-koeln.de/pc/msdos/programming/assembler/ida35bx.zip
(ftp://ftp.uni-koeln.de/pc/msdos/programming/assembler/ida35bx.zip)) to
disassemble the part that caused the error. We just have to find the address of the call
to FreeLibrary() . Some lines before that the runtime error occurred. But be
careful! In some cases you don’t have to disassemble the main program, but instead
some DLL called by it in order to find the correct place where the runtime error
occurred. That can be determined by finding the origin of the segment value (in this
case0x1cf).

• If you have created a relay file of some crashing program and want to set a
breakpoint at a certain location which is not yet available as the program loads the
breakpoint’s segment during execution, you may set a breakpoint to
GetVersion16/32 as those functions are called very often.

Then do ac until you are able to set this breakpoint without error message.

• Some useful programs:

14

Chapter 2. Debugging Wine

IDA: ftp://ftp.uni-

koeln.de/pc/msdos/programming/assembler/ida35bx.zip

(ftp://ftp.uni-

koeln.de/pc/msdos/programming/assembler/ida35bx.zip)

Verygood DOS disassembler ! It’s badly needed for debugging Wine
sometimes.

XRAY: ftp://ftp.th-darmstadt.de/pub/machines/ms-

dos/SimTel/msdos/asmutil/xray15.zip

(ftp://ftp.th-darmstadt.de/pub/machines/ms-

dos/SimTel/msdos/asmutil/xray15.zip)

Traces DOS calls (Int 21h, DPMI, ...). Use it with Windows to correct file
management problems etc.

pedump:
http://oak.oakland.edu/pub/simtelnet/win95/prog/pedump.zip

(http://oak.oakland.edu/pub/simtelnet/win95/prog/pedump.zip)

Dumps the imports and exports of a PE (Portable Executable) DLL.

2.3.7. Some basic debugger usages:
After starting your program with

wine -debug myprog.exe

the program loads and you get a prompt at the program starting point. Then you can set
breakpoints:

b RoutineName (by outine name) OR

15

Chapter 2. Debugging Wine

b *0x812575 (by address)

Then you hitc (continue) to run the program. It stops at the breakpoint. You can type

step (to step one line) OR
stepi (to step one machine instruction at a time;

here, it helps to know the basic 386
instruction set)

info reg (to see registers)
info stack (to see hex values in the stack)
info local (to see local variables)
list <line number> (to list source code)
x <variable name> (to examine a variable; only works if code

is not compiled with optimization)
x 0x4269978 (to examine a memory location)
? (help)
q (quit)

By hitting Enter, you repeat the last command.

2.4. Useful memory addresses
Written by Andreas Mohr <amohr@codeweavers.com >

Wine uses several different kinds of memory addresses.

Win32/"normal" Wine addresses/Linux: linear addresses.

Linear addresses can be everything from 0x0 up to 0xffffffff. In Wine on Linux
they are often around e.g. 0x08000000, 0x00400000 (std. Win32 program load
address), 0x40000000. Every Win32 process has its own private 4GB address
space (that is, from 0x0 up to 0xffffffff).

16

Chapter 2. Debugging Wine

Win16 "enhanced mode": segmented addresses.

These are the "normal" Win16 addresses, called SEGPTR. They have a
segment:offset notation, e.g. 0x01d7:0x0012. The segment part usually is a
"selector", which *always* has the lowest 3 bits set. Some sample selectors are
0x1f7, 0x16f, 0x8f. If these bits are set except for the lowest bit, as e.g. with
0x1f6,xi then it might be a handle to global memory. Just set the lowest bit to get
the selector in these cases. A selector kind of "points" to a certain linear (see
above) base address. It has more or less three important attributes: segment base
address, segment limit, segment access rights.

Example:

Selector 0x1f7 (0x40320000, 0x0000ffff, r-x) So 0x1f7 has a base address of
0x40320000, the segment’s last address is 0x4032ffff (limit 0xffff), and it’s
readable and executable. So an address of 0x1f7:0x2300 would be the linear
address of 0x40322300.

DOS/Win16 "standard mode"

They, too, have a segment:offset notation. But they are completely different from
"normal" Win16 addresses, as they just represent at most 1MB of memory: The
segment part can be anything from 0 to 0xffff, and it’s the same with the offset
part.

Now the strange thing is the calculation that’s behind these addresses: Just
calculate segment*16 + offset in order to get a "linear DOS" address. So e.g.
0x0f04:0x3628 results in 0xf040 + 0x3628 = 0x12668. And the highest address
you can get is 0xfffff (1MB), of course. In Wine, this "linear DOS" address of
0x12668 has to be added to the linear base address of the corresponding DOS
memory allocated for dosmod in order to get the true linear address of a DOS
seg:offs address. And make sure that you’re doing this in the correct process with
the correct linear address space, of course ;-)

17

Chapter 2. Debugging Wine

2.5. Configuration

2.5.1. Registry configuration
The Windows’ debugging API uses a registry entry to know which debugger to invoke
when an unhandled exception occurs (seeOn exceptionfor some details). Two values
in key

"MACHINE\\Software\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug"

Determine the behavior:

Debugger:

this is the command line used to launch the debugger (it uses twoprintf formats
(%ld) to pass context dependent information to the debugger). You should put here
a complete path to your debugger (WineDbg can of course be used, but any other
Windows’ debugging API aware debugger will do). The path to the debugger you
chose to use must be reachable via a DOS drive in the Wine config file !

You can also set a shell script to launch the debugger. In this case, you need to be
sure that the invocation in this shell script is of the form:

WINEPRELOAD=<path_to_winedbg.so> exec wine $*

(Shell script must use exec, and the debugger .so file must be preloaded to override
the shell script information).

Auto:

if this value is zero, a message box will ask the user if he/she wishes to launch the
debugger when an unhandled exception occurs. Otherwise, the debugger is
automatically started.

A regular Wine registry looks like:

18

Chapter 2. Debugging Wine

[MACHINE\\Software\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug] 957636538
"Auto"=dword:00000001
"Debugger"="/usr/local/bin/winedbg %ld %ld"

Note 1: creating this key is mandatory. Not doing so will not fire the debugger
when an exception occurs.

Note 2: wineinstall sets up this correctly. However, due to some limitation of the
registry installed, if a previous Wine installation exists, it’s safer to remove the
whole

[MACHINE\\Software\\Microsoft\\Windows NT\\CurrentVersion\\AeDebug]

key before running again wineinstall to regenerate this key.

2.5.2. WineDbg configuration
WineDbg can be configured thru a number of options. Those options are stored in the
registry, on a per user basis. The key is (inmyregistry)

[eric\\Software\\Wine\\WineDbg]

Those options can be read/written while insideWineDbg, as part of the debugger
expressions. To refer to one of these options, its name must be prefixed by a$ sign. For
example,

set $BreakAllThreadsStartup = 1

19

Chapter 2. Debugging Wine

sets the optionBreakAllThreadsStartup to TRUE.

All the options are read from the registry whenWineDbg starts (if no corresponding
value is found, a default value is used), and are written back to the registry when
WineDbg exits (hence, all modifications to those options are automatically saved when
WineDbg terminates).

Here’s the list of all options:

2.5.2.1. Controlling when the debugger is entered

BreakAllThreadsStartup

Set toTRUEif at all threads start-up the debugger stops set toFALSE if only at the
first thread startup of a given process the debugger stops.FALSEby default.

BreakOnCritSectTimeOut

Set toTRUEif the debugger stops when a critical section times out (5 minutes);
TRUEby default.

BreakOnAttach

Set toTRUEif whenWineDbg attaches to an existing process after an unhandled
exception,WineDbg shall be entered on the first attach event. Since the attach
event is meaningless in the context of an exception event (the next event which is
the exception event is of course relevant), that option is likely to beFALSE.

BreakOnFirstChance

An exception can generate two debug events. The first one is passed to the
debugger (known as a first chance) just after the exception. The debugger can then
decides either to resume execution (seeWineDbg’s cont command) or pass the
exception up to the exception handler chain in the program (if it exists) (WineDbg
implements this thru thepasscommand). If none of the exception handlers takes
care of the exception, the exception event is sent again to the debugger (known as
last chance exception). You cannot pass on a last exception. When the

20

Chapter 2. Debugging Wine

BreakOnFirstChance exception isTRUE, then winedbg is entered for both first
and last chance execptions (toFALSE, it’s only entered for last chance exceptions).

BreakOnDllLoad

Set toTRUEif the debugger stops when a DLL is loaded into memory; when the
debugger is invoked after a crash, the DLLs already mapped in memory will not
trigger this break.FALSEby default.

2.5.2.2. Output handling

ConChannelMask

Mask of active debugger output channels on console

StdChannelMask

Mask of active debugger output channels onstderr

UseXTerm

Set toTRUEif the debugger uses its ownxterm window for console input/output.
Set toFALSE if the debugger uses the current Unix console for input/output

Those last 3 variables are jointly used in two generic ways:

1. default

ConChannelMask = DBG_CHN_MESG (1)
StdChannelMask = 0
UseXTerm = 1

In this case, all input/output goes into a specificxterm window (but all debug
messagesTRACE, WARN... still goes to tty where wine is run from).

21

Chapter 2. Debugging Wine

2. to have all input/output go into the tty where Wine was started from (to be used in
a X11-free environment)

ConChannelMask = 0
StdChannelMask = DBG_CHN_MESG (1)
UseXTerm = 1

Those variables also allow, for example for debugging purposes, to use:

ConChannelMask = 0xfff
StdChannelMask = 0xfff
UseXTerm = 1

This allows to redirect allWineDbg output to both tty Wine was started from, and
xterm debugging window. If Wine (orWineDbg) was started with a redirection of
stdout and/orstderr to a file (with for example >& shell redirect command), you’ll
get in that file both outputs. It may be interesting to look in the relay trace for specific
values which the process segv’ed on.

2.5.2.3. Context information

ThreadId

ID of the W-thread currently examined by the debugger

ProcessId

ID of the W-thread currently examined by the debugger

<registers>

All CPU registers are also available

22

Chapter 2. Debugging Wine

TheThreadId andProcessId variables can be handy to set conditional breakpoints
on a given thread or process.

2.6. WineDbg Command Reference

2.6.1. Misc

abort aborts the debugger
quit exits the debugger

attach N attach to a W-process (N is its ID). IDs can be
obtained thru walk process command

help prints some help on the commands
help info prints some help on info commands

mode 16 switch to 16 bit mode
mode 32 switch to 32 bit mode

2.6.2. Flow control

cont continue execution until next breakpoint or exception.
pass pass the exception event up to the filter chain.
step continue execution until next C line of code (enters
function call)
next continue execution until next C line of code (doesn’t
enter function call)

23

Chapter 2. Debugging Wine

stepi execute next assembly instruction (enters function
call)
nexti execute next assembly instruction (doesn’t enter
function call)
finish do nexti commands until current function is exited

cont, step, next, stepi, nexti can be postfixed by a number (N), meaning that the
command must be executed N times.

2.6.3. Breakpoints, watch points

enable N enables (break|watch)point #N
disable N disables (break|watch)point #N
delete N deletes (break|watch)point #N
cond N removes any a existing condition to (break|watch)point N
cond N <expr> adds condition <expr> to (break|watch)point N. <expr>
will be evaluated each time the breakpoint is hit. If
the result is a zero value, the breakpoint isn’t
triggered
break * N adds a breakpoint at address N
break <id> adds a breakpoint at the address of symbol <id>
break <id> N adds a breakpoint at the address of symbol <id> (N ?)
break N adds a breakpoint at line N of current source file
break adds a breakpoint at current $pc address
watch * N adds a watch command (on write) at address N (on 4 bytes)
watch <id> adds a watch command (on write) at the address of
symbol <id>
info break lists all (break|watch)points (with state)

When setting a breakpoint on an <id>, if several symbols with this <id> exist, the
debugger will prompt for the symbol you want to use. Pick up the one you want from
its number.

24

Chapter 2. Debugging Wine

2.6.4. Stack manipulation

bt print calling stack of current thread
up goes up one frame in current thread’s stack
up N goes up N frames in current thread’s stack
dn goes down one frame in current thread’s stack
dn N goes down N frames in current thread’s stack
frame N set N as the current frame
info local prints information on local variables for current
function

2.6.5. Directory & source file manipulation

show dir
dir <pathname>
dir
symbolfile <module> <pathname>

list lists 10 source lines from current position
list - lists 10 source lines before current position
list N lists 10 source lines from line N in current file
list <path>:N lists 10 source lines from line N in file <path>
list <id> lists 10 source lines of function <id>
list * N lists 10 source lines from address N

You can specify the end target (to change the 10 lines value) using the ’,’. For example:

list 123, 234 lists source lines from line 123 up to line 234 in
current file
list foo.c:1,56 lists source lines from line 1 up to 56 in file foo.c

25

Chapter 2. Debugging Wine

2.6.6. Displaying
A display is an expression that’s evaluated and printed after the execution of any
WineDbg command.

display lists the active displays
info display (same as above command)
display <expr> adds a display for expression <expr>
display /fmt <expr> adds a display for expression <expr>. Printing
evaluated <expr> is done using the given format (see
print command for more on formats)
del display N deletes display #N
undisplay N (same as del display)

2.6.7. Disassembly

disas disassemble from current position
disas <expr> disassemble from address <expr>
disas <expr>,<expr>disassembles code between addresses specified by
the two <expr>

2.6.8. Information on Wine’s internals

info class <id> prints information on Windows’s class <id>
walk class lists all Windows’ class registered in Wine
info share lists all the dynamic libraries loaded the debugged
program (including .so files, NE and PE DLLs)
info module N prints information on module of handle N
walk module lists all modules loaded by debugged program
info queue N prints information on Wine’s queue N
walk queue lists all queues allocated in Wine

26

Chapter 2. Debugging Wine

info regs prints the value of CPU register
info segment N prints information on segment N
info segment lists all allocated segments
info stack prints the values on top of the stack
info map lists all virtual mappings used by the debugged
program
info wnd N prints information of Window of handle N
walk wnd lists all the window hierarchy starting from the
desktop window
walk wnd N lists all the window hierarchy starting from the
window of handle N
walk process lists all w-processes in Wine session
walk thread lists all w-threads in Wine session
walk modref (no longer avail)

2.6.9. Memory (reading, writing, typing)

x <expr> examines memory at <expr> address
x /fmt <expr> examines memory at <expr> address using format /fmt
print <expr> prints the value of <expr> (possibly using its type)
print /fmt <expr> prints the value of <expr> (possibly using its
type)
set <lval>=<expr> writes the value of <expr> in <lval>
whatis <expr> prints the C type of expression <expr>

/fmt is either/<letter> or /<count><letter> letter can be

s => an ASCII string
u => an Unicode UTF16 string
i => instructions (disassemble)
x => 32 bit unsigned hexadecimal integer
d => 32 bit signed decimal integer
w => 16 bit unsigned hexadecimal integer

27

Chapter 2. Debugging Wine

c => character (only printable 0x20-0x7f are actually
printed)

b => 8 bit unsigned hexadecimal integer

2.6.10. Expressions
Expressions in Wine Debugger are mostly written in a C form. However, there are a
few discrepancies:

• Identifiers can take a ’.’ in their names. This allow mainly to access symbols from
different DLLs like USER32.DLL.CreateWindowA

• Because of previous rule, fields access from a struct must be written as:

my_struct . my_field

(note the spaces after and before the dot).

2.7. Other debuggers

2.7.1. Using other Unix debuggers
You can also use other debuggers (likegdb), but you must be aware of a few items:

You need to attach the unix debugger to the correct unix process (representing the
correct windows thread) (you can "guess" it from aps fax for example: When running
the emulator, usually the first twoupids are for the Windows’ application running the
desktop, the first thread of the application is generally the thirdupid ; when running a
Winelib program, the first thread of the application is generally the firstupid)

28

Chapter 2. Debugging Wine

Note: Even if latest gdb implements the notion of threads, it won’t work with Wine
because the thread abstraction used for implementing Windows’ thread is not
100% mapped onto the linux posix threads implementation. It means that you’ll
have to spawn a different gdb session for each Windows’ thread you wish to
debug.

Following text written by Andreas Mohr <amohr@codeweavers.com >

Here’s how to get info about the current execution status of a certain Wine process:

Change into your Wine source dir and enter:

$ gdb wine

Switch to another console and enterps ax | grep wineto find all wine processes. Inside
gdb, repeat for all Wine processes:

(gdb) attach PID

with PID being the process ID of one of the Wine processes. Use

(gdb) bt

to get the backtrace of the current Wine process, i.e. the function call history. That way
you can find out what the current process is doing right now. And then you can use
several times:

(gdb) n

or maybe even

(gdb) b SomeFunction

29

Chapter 2. Debugging Wine

and

(gdb) c

to set a breakpoint at a certain function and continue up to that function. Finally you
can enter

(gdb) detach

to detach from the Wine process.

2.7.2. Using other Windows debuggers
You can use any Windows’ debugging API compliant debugger with Wine. Some
reports have been made of success with VisualStudio debugger (in remote mode, only
the hub runs in Wine). GoVest fully runs in Wine.

2.7.3. Main differences between winedbg and regular
Unix debuggers

+----------------------------------+-----------------------------
----+
| WineDbg | gdb |
+----------------------------------+-----------------------------
----+
WineDbg debugs a Windows’ process:	gdb debugs a Windows’ thread:
+ the various threads will be	+ a separate gdb session is
handled by the same WineDbg	needed for each thread of
session	Windows’ process
+ a breakpoint will be triggered	+ a breakpoint will be triggered
for any thread of the w-process	only for the w-thread debugged

30

Chapter 2. Debugging Wine

+----------------------------------+-----------------------------
----+
WineDbg supports debug information	gdb supports debug information
from:	from:
+ stabs (standard Unix format)	+ stabs (standard Unix format)
+ Microsoft’s C, CodeView, .DBG	
+----------------------------------+-----------------------------
----+

2.8. Limitations
16 bit processes are not supported (but calls to 16 bit code in 32 bit applications are).

31

Chapter 3. Documenting Wine
How to help out with the Wine documentation effort...

3.1. Writing Wine API Documentation
Written by Douglas Ridgway <ridgway@winehq.com >

(Extracted fromwine/documentation/README.documentation)

To improve the documentation of the Wine API, just add comments to the existing
source. For example,

/**
* CopyMetaFileA (GDI32.23)
*
* Copies the metafile corresponding to hSrcMetaFile to either
* a disk file, if a filename is given, or to a new memory based
* metafile, if lpFileName is NULL.
*
* RETURNS
*
* Handle to metafile copy on success, NULL on failure.
*
* BUGS
*
* Copying to disk returns NULL even if successful.
*/

HMETAFILE WINAPI CopyMetaFileA(
HMETAFILE hSrcMetaFile, /* handle of metafile to copy */
LPCSTR lpFilename /* filename if copying to a file */

) { ... }

becomes, after processing withc2manandnroff -man ,

32

Chapter 3. Documenting Wine

CopyMetaFileA(3w) CopyMetaFileA(3w)

NAME
CopyMetaFileA (GDI32.23)

SYNOPSIS
HMETAFILE CopyMetaFileA
(

HMETAFILE hSrcMetaFile,
LPCSTR lpFilename

);

PARAMETERS
HMETAFILE hSrcMetaFile

Handle of metafile to copy.

LPCSTR lpFilename
Filename if copying to a file.

DESCRIPTION
Copies the metafile corresponding to hSrcMetaFile to
either a disk file, if a filename is given, or to a new
memory based metafile, if lpFileName is NULL.

RETURNS
Handle to metafile copy on success, NULL on failure.

BUGS
Copying to disk returns NULL even if successful.

SEE ALSO
GetMetaFileA(3w), GetMetaFileW(3w), CopyMetaFileW(3w),
PlayMetaFile(3w), SetMetaFileBitsEx(3w), GetMetaFileBit-

sEx(3w)

33

Chapter 3. Documenting Wine

3.2. The Wine DocBook System
Written by John R. Sheets <jsheets@codeweavers.com >

3.2.1. Writing Documentation with DocBook
DocBook is a flavor of SGML (Standard Generalized Markup Language), a syntax for
marking up the contents of documents. HTML is another very common flavor of
SGML; DocBook markup looks very similar to HTML markup, although the names of
the markup tags differ.

3.2.1.1. Terminology

SGML markup contains a number of syntactical elements that serve different purposes
in the markup. We’ll run through the basics here to make sure we’re on the same page
when we refer to SGML semantics.

The basic currency of SGML is thetag. A simple tag consists of a pair of angle
brackets and the name of the tag. For example, the para tag would appear in an SGML
document as<para> . This start tag indicates that the immediately following text
should be classified according to the tag. In regular SGML, each opening tag must have
a matching end tag to show where the start tag’s contents end. End tags begin with
“</ ” markup, e.g.,</para> .

The combination of a start tag, contents, and an end tag is called anelement. SGML
elements can be nested inside of each other, or contain only text, or may be a
combination of both text and other elements, although in most cases it is better to limit
your elements to one or the other.

The XML (eXtensible Markup Language) specification, a modern subset of the SGML
specification, adds a so-calledempty tag, for elements that contain no text content. The
entire element is a single tag, ending with “/> ”, e.g., <xref/>. However, use of this tag
style restricts you to XML DocBook processing, and your document may no longer
compile with SGML-only processing systems.

34

Chapter 3. Documenting Wine

Often a processing system will need more information about an element than you can
provide with just tags. SGML allows you to add extra “hints” in the form of SGML
attributesto pass along this information. The most common use of attributes in
DocBook is giving specific elements a name, or an ID, so you can refer to it from
elsewhere. This ID can be used for many things, including file-naming for HTML
output, hyper-linking to specific parts of the document, and even pulling text from that
element (see the<xref> tag).

An SGML attribute appears inside the start tag, between the < and > brackets. For
example, if you wanted to set the id attribute of the<book> element to “mybook”, you
would create a start tag like this:

<book id="mybook">

Notice that the contents of the attribute are enclosed in quote marks. These quotes are
optional in SGML, but mandatory in XML. It’s a good habit to use quotes, as it will
make it much easier to migrate your documents to an XML processing system later on.

You can also specify more than one attribute in a single tag:

<book id="mybook" status="draft">

Another commonly used type of SGML markup is theentity. An entity lets you
associate a block of text with a name. You declare the entity once, at the beginning of
your document, and can invoke it as many times as you like throughout the document.
You can use entities as shorthand, or to make it easier to maintain certain phrases in a
central location, or even to insert the contents of an entire file into your document.

An entity in your document is always surrounded by the “&” and “;” characters. One
entity you’ll need sooner or later is the one for the “<” character. Since SGML expects
all tags to begin with a “<”, the “<” is a reserved character. To use it in your document
(as I am doing here), you must insert it with the< entity. Each time the SGML
processor encounters< , it will place a literal “<” in the output document.

35

Chapter 3. Documenting Wine

The final term you’ll need to know when writing simple DocBook documents is the
DTD (Document Type Declaration). The DTD defines the flavor of SGML a given
document is written in. It lists all the legal tag names, like<book> , <para> , and so on,
and declares how those tags are allowed to be used together. For example, it doesn’t
make sense to put a<book> element inside a<para> paragraph element -- only the
reverse.

The DTD thus defines the legal structure of the document. It also declares which
attributes can be used with which tags. The SGML processing system can use the DTD
to make sure the document is laid out properly before attempting to process it.
SGML-aware text editors likeEmacscan also use the DTD to guide you while you
write, offering you choices about which tags you can add in different places in the
document, and beeping at you when you try to add a tag where it doesn’t belong.

Generally, you will declare which DTD you want to use as the first line of your SGML
document. In the case of DocBook, you will use something like this:

<!doctype book PUBLIC "-//OASIS//DTD
DocBook V3.1//EN" []> <book> ...
</book>

Note that you must specify your toplevel element inside the doctype declaration. If you
were writing an article rather than a book, you might use this declaration instead:

<!doctype article PUBLIC "-//OASIS//DTD DocBook V3.1//EN" []>
<article>
...
</article>

3.2.1.2. The Document

Once you’re comfortable with SGML, creating a DocBook document is quite simple
and straightforward. Even though DocBook contains over 300 different tags, you can

36

Chapter 3. Documenting Wine

usually get by with only a small subset of those tags. Most of them are for inline
formatting, rather than for document structuring. Furthermore, the common tags have
short, intuitive names.

Below is a (completely nonsensical) example to illustrate how a simple document
might be laid out. Notice that all<chapter> and<sect1> elements have id attributes.
This is not mandatory, but is a good habit to get into, as DocBook is commonly
converted into HTML, with a separate generated file for each<book> , <chapter> ,
and/or<sect1> element. If the given element has an id attribute, the processor will
typically name the file accordingly. Thus, the below document might result in
index.html , chapter-one.html , blobs.html , and so on.

Also notice the text marked off with “<!-- ” and “ -->” characters. These denote SGML
comments. SGML processors will completely ignore anything between these markers,
similar to “/*” and “*/” comments in C source code.

<!doctype book PUBLIC "-//OASIS//DTD DocBook V3.1//EN" []>
<book id="index">

<bookinfo>
<title>A Poet’s Guide to Nonsense</title>

</bookinfo>

<chapter id="chapter-one">
<title>Blobs and Gribbles</title>

<!-- This section contains only one major topic -->
<sect1 id="blobs">

<title>The Story Behind Blobs</title>
<para>

Blobs are often mistaken for ice cubes and rain
puddles...

</para>
</sect1>

<!-- This section contains embedded sub-sections -->
<sect1 id="gribbles">

<title>Your Friend the Gribble</title>

37

Chapter 3. Documenting Wine

<para>
A Gribble is a cute, unassuming little fellow...

</para>

<sect2 id="gribble-temperament">
<title>Gribble Temperament</title>
<para>

When left without food for several days...
</para>

</sect2>

<sect2 id="gribble-appearance">
<title>Gribble Appearance</title>
<para>

Most Gribbles have a shock of white fur running from...
</para>

</sect2>
</sect1>

</chapter>

<chapter id="chapter-two">
<title>Phantasmagoria</title>

<sect1 id="dretch-pools">
<title>Dretch Pools</title>

<para>
When most poets think of Dretch Pools, they tend to...

</para>
</sect>

</chapter>
</book>

38

Chapter 3. Documenting Wine

3.2.1.3. Common Elements

Once you get used to the syntax of SGML, the next hurdle in writing DocBook
documentation is to learn the many DocBook-specific tag names, and when to use
them. DocBook was created for technical documentation, and as such, the tag names
and document structure are slanted towards the needs of such documentation.

To cover its target audience, DocBook declares a wide variety of specialized tags,
including tags for formatting source code (with somewhat of a C/C++ bias), computer
prompts, GUI application features, keystrokes, and so on. DocBook also includes tags
for universal formatting needs, like headers, footnotes, tables, and graphics.

We won’t cover all of these elements here (over 300 DocBook tags exist!), but we will
cover the basics. To learn more about the other tags, check out the official DocBook
guide, at http://docbook.org. To see how they are used in practice, download the SGML
source for this manual (the Wine Developer Guide) and browse through it, comparing it
to the generated HTML (or PostScript or PDF).

There are often many correct ways to mark up a given piece of text, and you may have
to make guesses about which tag to use. Sometimes you’ll have to make compromises.
However, remember that it is possible to furthercustomize the outputof the SGML
processors. If you don’t like the way a certain tag looks in HTML, that doesn’t mean
you should choose a different tag based on its output formatting. The processing
stylesheets can be altered to fix the formatting of that same tag everywhere in the
document (not just in the place you’re working on). For example, if you’re frustrated
that the<systemitem> tag doesn’t produce any formatting by default, you should fix
the stylesheets, not change the valid<systemitem> tag to, for example, an
<emphasis> tag.

Here are the common SGML elements:

Structural Elements

<book>

The book is the most common toplevel element, and is probably the one you
should use for your document.

39

Chapter 3. Documenting Wine

<set>

If you want to group more than one book into a single unit, you can place them all
inside a set. This is useful when you want to bundle up documentation in alternate
ways. We do this with the Wine documentation, using a<set> to put everything
into a single directory (seedocumentation/wine-doc.sgml), and a<book> to
put each Wine guide into a separate directory (see
documentation/wine-devel.sgml , etc.).

<chapter>

A <chapter> element includes a single entire chapter of the book.

<part>

If the chapters in your book fall into major categories or groupings (as in the
Wine Developer Guide), you can place each collection of chapters into a<part>

element.

<sect?>

DocBook has many section elements to divide the contents of a chapter into
smaller chunks. The encouraged approach is to use the numbered section tags,
<sect1> , <sect2> , <sect3> , <sect4> , and<sect5> (if necessary). These tags
must be nested in order: you can’t place a<sect3> directly inside a<sect1> .
You have to nest the<sect3> inside a<sect2> , and so forth. Documents with
these explicit section groupings are easier for SGML processors to deal with, and
lead to better organized documents. DocBook also supplies a<section> element
which you can nest inside itself, but its use is discouraged in favor of the
numbered section tags.

<title>

The title of a book, chapter, part, section, etc. In most of the major structural
elements, like<chapter> , <part> , and the various section tags,<title> is
mandatory. In other elements like<book> and<note> , it’s optional.

40

Chapter 3. Documenting Wine

<para>

The basic unit of text is the paragraph, represented by the<para> tag. This is
probably the tag you’ll use most often. In fact, in a simple document, you can
probably get away with using only<book> , <chapter> , <title> , and<para> .

<article>

For shorter, more targeted documents, like topic pieces and whitepapers, you can
use<article> as your toplevel element.

Inline Formatting Elements

<filename>

The name of a file. You can optionally set the class attribute toDirectory ,
HeaderFile , andSymLink to further classify the filename.

<userinput>

Literal text entered by the user.

<computeroutput>

Literal text output by the computer.

<literal>

A catch-all element for literal computer data. Its use is somewhat vague; try to
use a more specific tag if possible, like<userinput> or <computeroutput> .

<quote>

An inline quotation. This tag typically inserts quotation marks for you, so you
would write<quote> This is a quote</quote> rather than "This is a quote". This
usage may be a little bulkier, but it does allow for automated formatting of all
quoted material in the document. Thus, if you wanted all quotations to appear in
italic, you could make the change once in your stylesheet, rather than doing a

41

Chapter 3. Documenting Wine

search and replace throughout the document. For larger chunks of quoted text, you
can use<blockquote> .

<note>

Insert a side note for the reader. By default, the SGML processor usually prefixes
the content with "Note:". You can change this text by adding a<title> element.
Thus, to add a visible FIXME comment to the documentation, you might write:

<note>
<title>FIXME</title>
<para>This section needs more info about...</para>

</note>

The results will look something like this:

FIXME: This section needs more info about...

<sgmltag>

Used for inserting SGML tags, etc., into a SGML document without resorting to a
lot of entity quoting, e.g., <. You can change the appearance of the text with the
class attribute. Some common values of this arestarttag , endtag , attribute ,
attvalue , and evensgmlcomment . See this SGML file,
documentation/documentation.sgml , for examples.

<prompt>

The text used for a computer prompt, for example a shell prompt, or
command-line application prompt.

<replaceable>

Meta-text that should be replaced by the user, not typed in literally, e.g., in
command descriptions and--help outputs.

42

Chapter 3. Documenting Wine

<constant>

A programming constant, e.g.,MAX_PATH.

<symbol>

A symbolic value replaced, for example, by a pre-processor. This applies
primarily to C macros, but may have other uses. Use the<constant> tag instead
of <symbol> where appropriate.

<function>

A programming function name.

<parameter>

Programming language parameters you pass with a function.

<option>

Parameters you pass to a command-line executable.

<varname>

Variable name, typically in a programming language.

<type>

Programming language types, e.g., from a typedef definition. May have other
uses, too.

<structname>

The name of a C-language struct declaration, e.g., sockaddr.

<structfield>

A field inside a C struct.

<command>

An executable binary, e.g.,wine or ls.

43

Chapter 3. Documenting Wine

<envar>

An environment variable, e.g, $PATH.

<systemitem>

A generic catch-all for system-related things, like OS names, computer names,
system resources, etc.

<email>

An email address. The SGML processor will typically add extra formatting
characters, and even amailto: link for HTML pages. Usage:
<email> user@host.com</email>

<firstterm>

Special emphasis for introducing a new term. Can also be linked to a
<glossary> entry, if desired.

Item Listing Elements

<itemizedlist>

For bulleted lists, no numbering. You can tweak the layout with SGML attributes.

<orderedlist>

A numbered list; the SGML processor will insert the numbers for you. You can
suggest numbering styles with the numeration attribute.

<simplelist>

A very simple list of items, often inlined. Control the layout with the type
attribute.

<variablelist>

A list of terms with definitions or descriptions, like this very list!

44

Chapter 3. Documenting Wine

Block Text Quoting Elements

<programlisting>

Quote a block of source code. Typically highlighted in the output and set off from
normal text.

<screen>

Quote a block of visible computer output, like the output of a command or chunks
of debug logs.

Hyperlink Elements

<link>

Generic hypertext link, used for pointing to other sections within the current
document. You supply the visible text for the link, plus the name of the id attribute
of the element that you want to link to. For example:

<link linkend="configuring-wine">the section on configuring wine</link>
...
<sect2 id="configuring-wine">
...

<xref>

In-document hyperlink that can generate its own text. Similar to the<link> tag,
you use the linkend attribute to specify which target element you want to jump to:

<xref linkend="configuring-wine">
...
<sect2 id="configuring-wine">
...

45

Chapter 3. Documenting Wine

By default, most SGML processors will autogenerate some generic text for the
<xref> link, like “Section 2.3.1”. You can use the endterm attribute to grab the
visible text content of the hyperlink from another element:

<xref linkend="configuring-wine" endterm="config-title">
...
<sect2 id="configuring-wine">

<title id="config-title">Configuring Wine</title>
...

This would create a link to the configuring-wine element, displaying the text of
the config-title element for the hyperlink. Most often, you’ll add an id attribute to
the<title> of the section you’re linking to, as above, in which case the SGML
processor will use the target’s title text for the link text.

Alternatively, you can use an xreflabel attribute in the target element tag to specify
the link text:

<sect1 id="configuring-wine" xreflabel="Configuring Wine">

Note: <xref> is an empty element. You don’t need a closing tag for it (this is
defined in the DTD). In SGML documents, you should use the form <xref> ,
while in XML documents you should use <xref/>.

<anchor>

An invisible tag, used for inserting id attributes into a document to link to
arbitrary places (i.e., when it’s not close enough to link to the top of an element).

<ulink>

Hyperlink in URL form, e.g., http://www.winehq.com.

46

Chapter 3. Documenting Wine

<olink>

Indirect hyperlink; can be used for linking to external documents. Not often used
in practice.

3.2.1.4. Multiple SGML files

How to split an SGML document into multiple files...

3.2.2. The SGML Environment
You can write SGML/DocBook documents in any text editor you might find (although
as we’ll find inSection 3.2.3, some editors are more friendly for this task than others).
However, if you want to convert those documents into a more friendly form for reading,
such as HTML, PostScript, or PDF, you will need a working SGML environment. This
section attempts to lay out the various SGML rendering systems, and how they are set
up on the popular Linux distributions.

3.2.2.1. DSSSL Environment

Explain tools and methodologies..

3.2.2.2. XSLT Environment

Explain tools and methodologies...

3.2.2.3. SGML on Redhat

Most Linux distributions have everything you need already bundled up in package
form. Unfortunately, each distribution seems to handle its SGML environment

47

Chapter 3. Documenting Wine

differently, installing it into different paths, and naming its packages according to its
own whims.

3.2.2.4. SGML on Debian

List package names and install locations...

3.2.2.5. SGML on Other Distributions

List package names and install locations...

3.2.3. PSGML Mode in Emacs
Although you can write SGML documentation in any simple text editor, some editors
provide extra support for entering SGML tags, and for verifying that the SGML you
create is valid. SGML has been around for a long time, and many commercial editors
exist for it; however, until recently open source SGML editors have been scarce.

FIXME: List the available commercial and open source SGML editors.

The most commonly used open source SGML editor is Emacs, with the PSGMLmode,
or extension. Emacs does not supply a GUI or WYSIWYG (What You See Is What You
Get) interface, but it does provide many helpful shortcuts for creating SGML, as well
as automatic formatting, validity checking, and the ability to create your own macros to
simplify complex, repetitive actions. We’ll touch briefly on each of these points.

The first thing you need is a working installation of Emacs (or XEmacs), with the
PSGML package. Most Linux distributions provide both as easy-to-install packages.

Next, you’ll need a working SGML environment. SeeSection 3.2.2for more info on
setting that up.

48

Chapter 3. Documenting Wine

3.2.4. The DocBook Build System

3.2.4.1. Basic Infrastructure

How the build/make system works (makefiles, db2html, db2html-winehq, jade,
stylesheets).

3.2.4.2. Tweaking the DSSSL stylesheets

Things you can tweak, and how to do it (examples from default.dsl and winehq.dsl).

3.2.4.3. Generating docs for Wine web sites

Explain make_winehq, rsync, etc.

49

Chapter 4. Submitting Patches
Written by Albert den Haan <>

4.1. Patch Format
Your patch should include:

• a description of what was wrong and what is now better (and now broken :).

• your contact information (Name/Handle and e-mail)

• the patch indiff -u format (it happens...)

cvs diff -u works great for the common case where a file is edited. However, if you add
or remove a filecvs diff will not report that correctly so make sure you explicitly take
care of this rare case.

For additions: mention that you have some new files and include them as either separate
attachments or by appendingdiff -Nu of them to anycvs diff -u output you may have.

For removals, list the files.

4.2. Quality Assurance
(Or, "How do I get Alexandre to apply my patch quickly so I can build on it and it will
not go stale?")

Make sure your patch applies to the current CVS head revisions. If a bunch of patches
are commited to CVS that may affect whether your patch will apply cleanly then verify
that your patch does apply!cvs updateis your friend!

Save yourself some embarasment and run your patched code against more than just
your current test example. Experience will tell you how much effort to apply here.

50

Chapter 5. Internationalization

5.1. Adding New Languages
Written by Morten Welinder <>, January 1996.

• Thereafter revised February 1999 by Klaas van Gend

• Revised again May 23, 1999, Klaas van Gend

• Updated May 26, 2000, Zoran Dzelajlija

(Extracted fromwine/documentation/languages)

This file documents the necessary procedure for adding a new language to the list of
languages that Wine can display system menus and forms in. Currently at least the
following languages are still missing:

Bulgarian Chinese Greek Icelandic Japanese
Romanian Croatian Slovak Turkish Slovanian

Note: I hope I got all the places where changes are needed. If you see any place
missing from the list, submit a patch to this file please. Also note that
re-organization of the source code might change the list of places.

To add a new language you need to be able to translate the relatively few texts, of
course. You will need very little knowledge of programming, so you have almost no
excuses for not adding your language, right? We should easily be able to support 20
languages within a few months, get going! Apart from re-compilation it’ll take you
about an hour or two.

To add a new language to the list of languages that Wine can handle you must...

51

Chapter 5. Internationalization

1. Find the language ID ininclude/winnls.h .

2. Look in ole/ole2nls.c if your language is already incorporated in thestatic

const struct NLS_langlocale . If not: find the appropriate entries in
include/winnls.h and add them to the list.

3. Edit the parameters defined inole/nls/*.nls to fit your local habits and
language.

4. Edit documentation/wine.man.in (search for-language) to show the new
language abbreviation.

5. Edit misc/main.c variableLanguages to contain the new language
abbreviation and language ID. Also edit struct option_table inmisc/options.c

to show the new abbreviation.

6. Edit include/options.h enumWINE_LANGUAGEto have a member called
LANG_XXwhereXX is the new abbreviation.

7. Create a new filedlls/commdlg/cdlg_XX.rc (whereXX is your language
abbreviation) containing all menus. Your best bet is to copycdlg_En.rc and start
translating. There is no real need to know how the internal structure of the file, as
you only need to translate the text within quotes.

In menus, the character "&" means that the next character will be highlighted and
that pressing that letter will select the item. You should place these "&" characters
suitably for your language, not just copy the positions from (say) English. In
particular, items within one menu should have different highlighted letters.

8. Edit dlls/commdlg/rsrc.rc to contain an #include statement for your
cdlg_XX.rc file.

9. Repeat steps 6 and 7 again for:

• dlls/shell32/shell32_XX.rc andshres.rc

• resources/sysres_XX.rc anduser32.rc

10. Re-configure, re-make dependencies, and re-make Wine.

52

Chapter 5. Internationalization

11. Check your new menus and forms; when they’re not ok, go back to 6) and adapt
the sizes, etc.

12. Several of the winelib based programs in the subdirectory programs also have
internationalisation support. See the appropriate files there for reference.

13.Edit documentation/internationalisation to show the new status.

14. Submit patches for inclusion in the next Wine release, see file./ANNOUNCEfor
details about where to submit.

53

Chapter 6. Tools

6.1. bin2res
Written by Juergen Schmied <juergen.schmied@metronet.de > (11/99)

(Extracted fromwine/documentation/resources)

This document desribes tools for handling resources within wine

6.1.1. bin2res
This tool allows the editing of embedded binary resources within*.rc files. These
resources are stored as hex dump so they can be stored within the cvs tree. This makes
the editing of the embedded bitmaps and icons harder.

6.1.2. Create binary files from an .rc file
The resources in the.rc file have to be marked by a header:

/* BINRES idb_std_small.bmp */
IDB_STD_SMALL BITMAP LOADONCALL DISCARDABLE
{

’42 4D 20 07 00 00 00 00 00 00 76 00 00 00 28 00’

BINRES is the keyword followed by a filename.bin2res -d bin rsrc.rc generates binary
files from all marked resources. If the binary file is newer it gets not overwritten. To
force overwriting use the-f switch.

54

Chapter 6. Tools

6.1.3. Create a .rc file from binaries
Put a header followed by empty brackets in the.rc file.

/* BINRES idb_std_small.bmp */
{}

Then runbin2res rsrc.rc. It will merge the resources into the.rc file if the binary
resources are newer than the.rc file. To force the resources into the.rc file use the-f
switch. If there is already a resource with the same filename in the.rc file it gets
overwritten.

6.1.4. output of bin2res

bash-2.03# ../../tools/bin2res -d bin shres.rc
[000.ico:c][003.ico:c][008.ico:s][015.ico:s][034.ico:s]

s means skipped,c means changed.

55

II. Wine Architecture
Table of Contents

7. Overview...57

8. Debug Logging...76

9. COM/OLE in Wine ..90

10. Wine and OpenGL...99

11. The Wine Build System...107

12. Wine Builtin DLLs Overview ..108

13. Wine and Multimedia..122

Chapter 7. Overview
Brief overview of Wine’s architecture...

7.1. Basic Overview
Written by Ove Kåven <ovek@winehq.com >

With the fundamental architecture of Wine stabilizing, and people starting to think that
we might soon be ready to actually release this thing, it may be time to take a look at
how Wine actually works and operates.

7.1.1. Wine Overview
Wine is often used as a recursive acronym, standing for "Wine Is Not an Emulator".
Sometimes it is also known to be used for "Windows Emulator". In a way, both
meanings are correct, only seen from different perspectives. The first meaning says that
Wine is not a virtual machine, it does not emulate a CPU, and you are not supposed to
install neither Windows nor any Windows device drivers on top of it; rather, Wine is an
implementation of the Windows API, and can be used as a library to port Windows
applications to Unix. The second meaning, obviously, is that to Windows binaries
(.exe files), Wine does look like Windows, and emulates its behaviour and quirks
rather closely.

Note: The "Emulator" perspective should not be thought of as if Wine is a typical
inefficient emulation layer that means Wine can’t be anything but slow - the
faithfulness to the badly designed Windows API may of course impose a minor
overhead in some cases, but this is both balanced out by the higher efficiency of
the Unix platforms Wine runs on, and that other possible abstraction libraries (like
Motif, GTK+, CORBA, etc) has a runtime overhead typically comparable to
Wine’s.

57

Chapter 7. Overview

7.1.2. Win16 and Win32
Win16 and Win32 applications have different requirements; for example, Win16 apps
expect cooperative multitasking among themselves, and to exist in the same address
space, while Win32 apps except the complete opposite, i.e. preemptive multitasking,
and separate address spaces.

Wine now deals with this issue by launching a separate Wine process for each Win32
process, but not for Win16 tasks. Win16 tasks are now run as different
intersynchronized threads in the same Wine process; this Wine process is commonly
known as aWOWprocess, referring to a similar mechanism used by Windows NT.
Synchronization between the Win16 tasks running in the WOW process is normally
done through the Win16 mutex - whenever one of them is running, it holds the Win16
mutex, keeping the others from running. When the task wishes to let the other tasks
run, the thread releases the Win16 mutex, and one of the waiting threads will then
acquire it and let its task run.

7.1.3. The Wineserver
The Wineserver is among the most confusing concepts in Wine. What is its function in
Wine? Well, to be brief, it provides Inter-Process Communication (IPC),
synchronization, and process/thread management. When the wineserver launches, it
creates a Unix socket for the current host in your home directory’s.wine subdirectory
(or wherever theWINEPREFIXenvironment variable points) - all Wine processes
launched later connects to the wineserver using this socket. (If a wineserver was not
already running, the first Wine process will start up the wineserver in auto-terminate
mode (i.e. the wineserver will then terminate itself once the last Wine process has
terminated).)

Every thread in each Wine process has its own request buffer, which is shared with the
wineserver. When a thread needs to synchronize or communicate with any other thread
or process, it fills out its request buffer, then writes a command code through the
socket. The wineserver handles the command as appropriate, while the client thread
waits for a reply. In some cases, like with the variousWaitFor synchronization

58

Chapter 7. Overview

primitives, the server handles it by marking the client thread as waiting and does not
send it a reply before the wait condition has been satisfied.

The wineserver itself is a single and separate process and does not have its own
threading - instead, it is built on top of a largepoll() loop that alerts the wineserver
whenever anything happens, such that a client has sent a command, or a wait condition
has been satisfied. There is thus no danger of race conditions inside the wineserver
itself - it is often called upon to do operations that look completely atomic to its clients.

Because the wineserver needs to manage processes, threads, shared handles,
synchronization, and any related issues, all the client’s Win32 objects are also managed
by the wineserver, and the clients must send requests to the wineserver whenever they
need to know any Win32 object handle’s associated Unix file descriptor (in which case
the wineserver duplicates the file descriptor, transmits it to the client, and leaves to the
client to close the duplicate when it’s done with it).

7.1.4. The Service Thread
The Wineserver cannot do everything that needs to be done behind the application’s
back, considering that it’s not threaded (so cannot do anything that would block or take
any significant amount of time), nor does it share the address space of its client threads.
Thus, a special event loop also exists in each Win32 process’ own address space, but
handled like one of the process’ own threads. This special thread is called theservice
thread, and does things that it wouldn’t be appropriate for the wineserver to do. For
example, it can call the application’s asynchronous system timer callbacks every time a
timer event is signalled (the wineserver handles the signalling, of course).

One important function of the service thread is to support the X11 driver’s event loop.
Whenever an event arrives from the X server, the service thread wakes up and sees the
event, processes it, and posts messages into the application’s message queues as
appropriate. But this function is not unique - any number of Wine core components can
install their own handlers into the service thread as necessary, whenever they need to do
something independent of the application’s own event loop. (At the moment, this
includes, but is not limited to, multimedia timers, serial comms, and winsock async
selects.)

59

Chapter 7. Overview

The implementation of the service thread is inscheduler/services.c .

7.1.5. Relays, Thunks, and DLL descriptors
Loading a Windows binary into memory isn’t that hard by itself, the hard part is all
those various DLLs and entry points it imports and expects to be there and function as
expected; this is, obviously, what the entire Wine implementation is all about. Wine
contains a range of DLL implementations. Each of the implemented (or
half-implemented) DLLs (which can be found in thedlls/ directory) need to make
themselves known to the Wine core through a DLL descriptor. These descriptors point
to such things as the DLL’s resources and the entry point table.

The DLL descriptor and entry point table is generated by thewinebuild tool
(previously just namedbuild), taking DLL specification files with the extension.spec

as input. The output file contains a global constructor that automatically registers the
DLL’s descriptor with the Wine core at runtime.

Once an application module wants to import a DLL, Wine will look through its list of
registered DLLs (if it’s not registered, it will look for it on disk). (Failing that, it will
look for a real Windows.DLL file to use, and look through its imports, etc.) To resolve
the module’s imports, Wine looks through the entry point table and finds if it’s defined
there. (If not, it’ll emit the error "No handler for ...", which, if the application called the
entry point, is a fatal error.)

Since Wine is 32-bit code itself, and if the compiler supports Windows’ calling
convention, stdcall (gccdoes), Wine can resolve imports into Win32 code by
substituting the addresses of the Wine handlers directly without any thunking layer in
between. This eliminates the overhead most people associate with "emulation", and is
what the applications expect anyway.

However, if the user specified--debugmsg +relay , a thunk layer is inserted
between the application imports and the Wine handlers; this layer is known as "relay"
because all it does is print out the arguments/return values (by using the argument lists
in the DLL descriptor’s entry point table), then pass the call on, but it’s invaluable for
debugging misbehaving calls into Wine code. A similar mechanism also exists between

60

Chapter 7. Overview

Windows DLLs - Wine can optionally insert thunk layers between them, by using
--debugmsg +snoop , but since no DLL descriptor information exists for non-Wine
DLLs, this is less reliable and may lead to crashes.

For Win16 code, there is no way around thunking - Wine needs to relay between 16-bit
and 32-bit code. These thunks switch between the app’s 16-bit stack and Wine’s 32-bit
stack, copies and converts arguments as appropriate, and handles the Win16 mutex.
Suffice to say that the kind of intricate stack content juggling this results in, is not
exactly suitable study material for beginners.

7.1.6. Core and non-core DLLs
Wine must at least completely replace the "Big Three" DLLs (KERNEL/KERNEL32,
GDI/GDI32, and USER/USER32), which all other DLLs are layered on top of. But
since Wine is (for various reasons) leaning towards the NT way of implementing
things, the NTDLL is another core DLL to be implemented in Wine, and many
KERNEL32 and ADVAPI32 features will be implemented through the NTDLL. The
wineserver and the service thread provide the backbone for the implementation of these
core DLLs, and integration with the X11 driver (which provides GDI/GDI32 and
USER/USER32 functionality along with the Windows standard controls). All non-core
DLLs, on the other hand, are expected to only use routines exported by other DLLs
(and none of these backbone services directly), to keep the code base as tidy as
possible. An example of this is COMCTL32 (Common Controls), which should only
use standard GDI32- and USER32-exported routines.

7.2. Module Overview
written by (???)

(Extracted fromwine/documentation/internals)

61

Chapter 7. Overview

7.2.1. KERNEL Module
Needs some content...

7.2.2. GDI Module

7.2.2.1. X Windows System interface

The X libraries used to implement X clients (such as Wine) do not work properly if
multiple threads access the same display concurrently. It is possible to compile the X
libraries to perform their own synchronization (initiated by callingXInitThreads()).
However, Wine does not use this approach. Instead Wine performs its own
synchronization by putting a wrapper around every X call that is used. This wrapper
protects library access with a critical section, and also arranges things so that X
libraries compiled without-D_REENTRANT(eg. with globalerrno variable) will work
with Wine.

To make this scheme work, all calls to X must use the proper wrapper functions (or do
their own synchronization that is compatible with the wrappers). The wrapper for a
functionX...() is callesTSX...() (for "Thread Safe X ..."). So for example, instead
of calling XOpenDisplay() in the code,TSXOpenDisplay() must be used.
Likewise, X header files that contain function prototypes are wrapped, so that eg.
"ts_xutil.h" must be included rather than<X11/Xutil.h> . It is important that this
scheme is used everywhere to avoid the introduction of nondeterministic and
hard-to-find errors in Wine.

The code for the thread safe X wrappers is contained in thetsx11/ directory and in
include/ts*.h . To use a new (ie. not previously used) X function in Wine, a new
wrapper must be created. The wrappers are generated (semi-)automatically from the
X11R6 includes using thetools/make_X11wrappers perl script. In simple cases it
should be enough to add the name of the new function to the list in
tsx11/X11_calls ; if this does not work the wrapper must be added manually to the
make_X11wrappers script. See comments intsx11/X11_calls and
tools/make_X11wrappers for further details.

62

Chapter 7. Overview

7.2.3. USER Module
USER implements windowing and messaging subsystems. It also contains code for
common controls and for other miscellaneous stuff (rectangles, clipboard, WNet, etc).
Wine USER code is located inwindows/ , controls/ , andmisc/ directories.

7.2.3.1. Windowing subsystem

windows/win.c

windows/winpos.c

Windows are arranged into parent/child hierarchy with one common ancestor for all
windows (desktop window). Each window structure contains a pointer to the immediate
ancestor (parent window ifWS_CHILDstyle bit is set), a pointer to the sibling (returned
by GetWindow(..., GW_NEXT)), a pointer to the owner window (set only for popup
window if it was created with validhwndParent parameter), and a pointer to the first
child window (GetWindow(.., GW_CHILD)). All popup and non-child windows are
therefore placed in the first level of this hierarchy and their ancestor link
(wnd->parent) points to the desktop window.

Desktop window - root window
| \ ‘-.
| \ ‘-.

popup -> wnd1 -> wnd2 - top level windows
| \ ‘-. ‘-.
| \ ‘-. ‘-.

child1 child2 -> child3 child4 - child windows

Horizontal arrows denote sibling relationship, vertical lines - ancestor/child. To
summarize, all windows with the same immediate ancestor are sibling windows, all
windows which do not have desktop as their immediate ancestor are child windows.
Popup windows behave as topmost top-level windows unless they are owned. In this
case the only requirement is that they must precede their owners in the top-level sibling
list (they are not topmost). Child windows are confined to the client area of their parent

63

Chapter 7. Overview

windows (client area is where window gets to do its own drawing, non-client area
consists of caption, menu, borders, intrinsic scrollbars, and
minimize/maximize/close/help buttons).

Another fairly important concept isz-order. It is derived from the ancestor/child
hierarchy and is used to determine "above/below" relationship. For instance, in the
example above, z-order is

child1->popup->child2->child3->wnd1->child4->wnd2->desktop.

Current active window ("foreground window" in Win32) is moved to the front of
z-order unless its top-level ancestor owns popup windows.

All these issues are dealt with (or supposed to be) inwindows/winpos.c with
SetWindowPos() being the primary interface to the window manager.

Wine specifics: in default and managed mode each top-level window gets its own X
counterpart with desktop window being basically a fake stub. In desktop mode,
however, only desktop window has an X window associated with it. Also,
SetWindowPos() should eventually be implemented via
Begin/End/DeferWindowPos() calls and not the other way around.

7.2.3.1.1. Visible region, clipping region and update region

windows/dce.c

windows/winpos.c

windows/painting.c

|_________ | A and B are child windows of C
A	______	
---------’		
	B	
‘------------’		

64

Chapter 7. Overview

| C |
‘------------------------’

Visible region determines which part of the window is not obscured by other windows.
If a window has theWS_CLIPCHILDRENstyle then all areas below its children are
considered invisible. Similarily, if theWS_CLIPSIBLINGS bit is in effect then all areas
obscured by its siblings are invisible. Child windows are always clipped by the
boundaries of their parent windows.

B has aWS_CLIPSIBLINGS style:

. ______
: | |
| ,-----’ |
| | B | - visible region of B
| | |
: ‘------------’

When the program requests adisplay context(DC) for a window it can specify an
optional clipping region that further restricts the area where the graphics output can
appear. This area is calculated as an intersection of the visible region and a clipping
region.

Program asked for a DC with a clipping region:

,--|--. | . ,--.

,--+--’ | | : _: |
| | B | | => | | | - DC region where the painting will
| | | | | | | be visible
‘--|-----|---’ : ‘----’

‘-----’

When the window manager detects that some part of the window became visible it adds
this area to the update region of this window and then generatesWM_ERASEBKGNDand

65

Chapter 7. Overview

WM_PAINTmessages. In addition,WM_NCPAINTmessage is sent when the uncovered
area intersects a nonclient part of the window. Application must reply to theWM_PAINT

message by calling theBeginPaint() /EndPaint() pair of functions.
BeginPaint() returns a DC that uses accumulated update region as a clipping region.
This operation cleans up invalidated area and the window will not receive another
WM_PAINTuntil the window manager creates a new update region.

A was moved to the left:

________________________ ... / C update region
|______ | : .___ /
| A |_________ | => | ...|___|..
| | | | | : | |
|------’ | | | : ’---’
| | B | | | : \
| | | | : \
| ‘------------’ | B update region
| C |
‘------------------------’

Windows maintains a display context cache consisting of entries that include the DC
itself, the window to which it belongs, and an optional clipping region (visible region is
stored in the DC itself). When an API call changes the state of the window tree,
window manager has to go through the DC cache to recalculate visible regions for
entries whose windows were involved in the operation. DC entries (DCE) can be either
private to the window, or private to the window class, or shared between all windows
(Windows 3.1 limits the number of shared DCEs to 5).

7.2.3.2. Messaging subsystem

windows/queue.c

windows/message.c

66

Chapter 7. Overview

Each Windows task/thread has its own message queue - this is where it gets messages
from. Messages can be:

1. generated on the fly (WM_PAINT, WM_NCPAINT, WM_TIMER)

2. created by the system (hardware messages)

3. posted by other tasks/threads (PostMessage)

4. sent by other tasks/threads (SendMessage)

Message priority:

First the system looks for sent messages, then for posted messages, then for hardware
messages, then it checks if the queue has the "dirty window" bit set, and, finally, it
checks for expired timers. Seewindows/message.c .

From all these different types of messages, only posted messages go directly into the
private message queue. System messages (even in Win95) are first collected in the
system message queue and then they either sit there untilGet/PeekMessage gets to
process them or, as in Win95, if system queue is getting clobbered, a special thread
("raw input thread") assigns them to the private queues. Sent messages are queued
separately and the sender sleeps until it gets a reply. Special messages are generated on
the fly depending on the window/queue state. If the window update region is not empty,
the system sets theQS_PAINTbit in the owning queue and eventually this window
receives aWM_PAINTmessage (WM_NCPAINTtoo if the update region intersects with
the non-client area). A timer event is raised when one of the queue timers expire.
Depending on the timer parametersDispatchMessage either calls the callback
function or the window procedure. If there are no messages pending the task/thread
sleeps until messages appear.

There are several tricky moments (open for discussion) -

• System message order has to be honored and messages should be processed within
correct task/thread context. Therefore whenGet/PeekMessage encounters
unassigned system message and this message appears not to be for the current

67

Chapter 7. Overview

task/thread it should either skip it (or get rid of it by moving it into the private
message queue of the target task/thread - Win95, AFAIK) and look further or roll
back and then yield until this message gets processed when system switches to the
correct context (Win16). In the first case we lose correct message ordering, in the
second case we have the infamous synchronous system message queue. Here is a
post to one of the OS/2 newsgroup I found to be relevant:

by David Charlap

" Here’s the problem in a nutshell, and there is no good solution. Every possible solution
creates a different problem.

With a windowing system, events can go to many different windows. Most are sent by
applications or by the OS when things relating to that window happen (like repainting,
timers, etc.)

Mouse input events go to the window you click on (unless some window captures the
mouse).

So far, no problem. Whenever an event happens, you put a message on the target
window’s message queue. Every process has a message queue. If the process queue fills
up, the messages back up onto the system queue.

This is the first cause of apps hanging the GUI. If an app doesn’t handle messages and
they back up into the system queue, other apps can’t get any more messages. The reason
is that the next message in line can’t go anywhere, and the system won’t skip over it.

This can be fixed by making apps have bigger private message queues. The SIQ fix does
this. PMQSIZE does this for systems without the SIQ fix. Applications can also request
large queues on their own.

Another source of the problem, however, happens when you include keyboard events.
When you press a key, there’s no easy way to know what window the keystroke message
should be delivered to.

Most windowing systems use a concept known as "focus". The window with focus gets
all incoming keyboard messages. Focus can be changed from window to window by
apps or by users clicking on winodws.

This is the second source of the problem. Suppose window A has focus. You click on
window B and start typing before the window gets focus. Where should the keystrokes
go? On the one hand, they should go to A until the focus actually changes to B. On the
other hand, you probably want the keystrokes to go to B, since you clicked there first.

68

Chapter 7. Overview

OS/2’s solution is that when a focus-changing event happens (like clicking on a
window), OS/2 holds all messages in the system queue until the focus change actually
happens. This way, subsequent keystrokes go to the window you clicked on, even if it
takes a while for that window to get focus.

The downside is that if the window takes a real long time to get focus (maybe it’s not
handling events, or maybe the window losing focus isn’t handling events), everything
backs up in the system queue and the system appears hung.

There are a few solutions to this problem.

One is to make focus policy asynchronous. That is, focus changing has absolutely
nothing to do with the keyboard. If you click on a window and start typing before the
focus actually changes, the keystrokes go to the first window until focus changes, then
they go to the second. This is what X-windows does.

Another is what NT does. When focus changes, keyboard events are held in the system
message queue, but other events are allowed through. This is "asynchronous" because
the messages in the system queue are delivered to the application queues in a different
order from that with which they were posted. If a bad app won’t handle the "lose focus"
message, it’s of no consequence - the app receiving focus will get its "gain focus"
message, and the keystrokes will go to it.

The NT solution also takes care of the application queue filling up problem. Since the
system delivers messages asynchronously, messages waiting in the system queue will
just sit there and the rest of the messages will be delivered to their apps.

The OS/2 SIQ solution is this: When a focus-changing event happens, in addition to
blocking further messages from the application queues, a timer is started. When the
timer goes off, if the focus change has not yet happened, the bad app has its focus taken
away and all messages targetted at that window are skipped. When the bad app finally
handles the focus change message, OS/2 will detect this and stop skipping its messages.

As for the pros and cons:

The X-windows solution is probably the easiest. The problem is that users generally
don’t like having to wait for the focus to change before they start typing. On many
occasions, you can type and the characters end up in the wrong window because
something (usually heavy system load) is preventing the focus change from happening in
a timely manner.

The NT solution seems pretty nice, but making the system message queue asynchronous
can cause similar problems to the X-windows problem. Since messages can be delivered

69

Chapter 7. Overview

out of order, programs must not assume that two messages posted in a particular order
will be delivered in that same order. This can break legacy apps, but since Win32 always
had an asynchronous queue, it is fair to simply tell app designers "don’t do that". It’s
harder to tell app designers something like that on OS/2 - they’ll complain "you changed
the rules and our apps are breaking."

The OS/2 solution’s problem is that nothing happens until you try to change window
focus, and then wait for the timeout. Until then, the bad app is not detected and nothing
is done."

• Intertask/interthreadSendMessage . The system has to inform the target queue
about the forthcoming message, then it has to carry out the context switch and wait
until the result is available. Win16 stores necessary parameters in the queue structure
and then callsDirectedYield() function. However, in Win32 there could be
several messages pending sent by preemptively executing threads, and in this case
SendMessage has to build some sort of message queue for sent messages. Another
issue is what to do with messages sent to the sender when it is blocked inside its own
SendMessage .

7.3. WINE/WINDOWS DLLs
Based upon various messages on wine-devel especially by Ulrich Weigand. Adapted by
Michele Petrovski and Klaas van Gend.

(Extracted fromwine/documentation/dlls)

This document mainly deals with the status of current DLL support by Wine. The Wine
ini file currently supports settings to change the load order of DLLs. The load order
depends on several issues, which results in different settings for various DLLs.

70

Chapter 7. Overview

7.3.1. Pros of Native DLLs
Native DLLs of course guarantee 100% compatibility for routines they implement. For
example, using the native USER DLL would maintain a virtually perfect and Windows
95-like look for window borders, dialog controls, and so on. Using the built-in WINE
version of this library, on the other hand, would produce a display that does not
precisely mimic that of Windows 95. Such subtle differences can be engendered in
other important DLLs, such as the common controls library COMMCTRL or the
common dialogs library COMMDLG, when built-in WINE DLLs outrank other types
in load order.

More significant, less aesthetically-oriented problems can result if the built-in WINE
version of the SHELL DLL is loaded before the native version of this library. SHELL
contains routines such as those used by installer utilities to create desktop shortcuts.
Some installers might fail when using WINE’s built-in SHELL.

7.3.2. Cons of Native DLLs
Not every application performs better under native DLLs. If a library tries to access
features of the rest of the system that are not fully implemented in Wine, the native
DLL might work much worse than the corresponding built-in one, if at all. For
example, the native Windows GDI library must be paired with a Windows display
driver, which of course is not present under Intel Unix and WINE.

Finally, occassionally built-in WINE DLLs implement more features than the
corresponding native Windows DLLs. Probably the most important example of such
behavior is the integration of Wine with X provided by WINE’s built-in USER DLL.
Should the native Windows USER library take load-order precedence, such features as
the ability to use the clipboard or drag-and- drop between Wine windows and X
windows will be lost.

71

Chapter 7. Overview

7.3.3. Deciding Between Native and Built-In DLLs
Clearly, there is no one rule-of-thumb regarding which load-order to use. So, you must
become familiar with:

• what specific DLLs do

• which other DLLs or features a given library interacts with

and use this information to make a case-by-case decision.

7.3.4. Load Order for DLLs
Using the DLL sections from the wine configuration file, the load order can be tweaked
to a high degree. In general it is advised not to change the settings of the configuration
file. The default configuration specifies the right load order for the most important
DLLs.

The default load order follows this algorithm: for all DLLs which have a
fully-functional Wine implementation, or where the native DLL is known not to work,
the built-in library will be loaded first. In all other cases, the native DLL takes
load-order precedence.

TheDefaultLoadOrder from the [DllDefaults] section specifies for all DLLs which
version to try first. See manpage for explanation of the arguments.

The [DllOverrides] section deals with DLLs, which need a different-from-default
treatment.

The [DllPairs] section is for DLLs, which must be loaded in pairs. In general, these are
DLLs for either 16-bit or 32-bit applications. In most cases in Windows, the 32-bit
version cannot be used without its 16-bit counterpart. For WINE, it is customary that
the 16-bit implementations rely on the 32-bit implementations and cast the results back
to 16-bit arguments. Changing anything in this section is bound to result in errors.

For the future, the Wine implementation of Windows DLL seems to head towards
unifying the 16 and 32 bit DLLs wherever possible, resulting in larger DLLs. They are

72

Chapter 7. Overview

stored in thedlls/ subdirectory using the 16-bit name. For large DLLs, a split might
be discussed.

7.3.5. Understanding What DLLs Do
The following list briefly describes each of the DLLs commonly found in Windows
whose load order may be modified during the configuration and compilation of WINE.

(See also./DEVELOPER-HINTS or thedlls/ subdirectory to see which DLLs are
currently being rewritten for wine)

ADVAPI32.DLL: 32-bit application advanced programming interfaces
like crypto, systeminfo, security and eventlogging

AVIFILE.DLL: 32-bit application programming interfaces for the
Audio Video Interleave (AVI) Windows-specific
Microsoft audio-video standard

COMMCTRL.DLL: 16-bit common controls
COMCTL32.DLL: 32-bit common controls
COMDLG32.DLL: 32-bit common dialogs
COMMDLG.DLL: 16-bit common dialogs
COMPOBJ.DLL: OLE 16- and 32-bit compatibility libraries
CRTDLL.DLL: Microsoft C runtime
DCIMAN.DLL: 16-bit
DCIMAN32.DLL: 32-bit display controls
DDEML.DLL: DDE messaging
D3D*.DLL DirectX/Direct3D drawing libraries
DDRAW.DLL: DirectX drawing libraries
DINPUT.DLL: DirectX input libraries
DISPLAY.DLL: Display libraries
DPLAY.DLL, DPLAYX.DLL: DirectX playback libraries
DSOUND.DLL: DirectX audio libraries
GDI.DLL: 16-bit graphics driver interface
GDI32.DLL: 32-bit graphics driver interface
IMAGEHLP.DLL: 32-bit IMM API helper libraries (for PE-executables)
IMM32.DLL: 32-bit IMM API
IMGUTIL.DLL:

73

Chapter 7. Overview

KERNEL32.DLL 32-bit kernel DLL
KEYBOARD.DLL: Keyboard drivers
LZ32.DLL: 32-bit Lempel-Ziv or LZ file compression

used by the installshields (???).
LZEXPAND.DLL: LZ file expansion; needed for Windows Setup
MMSYSTEM.DLL: Core of the Windows multimedia system
MOUSE.DLL: Mouse drivers
MPR.DLL: 32-bit Windows network interface
MSACM.DLL: Core of the Addressed Call Mode or ACM system
MSACM32.DLL: Core of the 32-bit ACM system

Audio Compression Manager ???
MSNET32.DLL 32-bit network APIs
MSVFW32.DLL: 32-bit Windows video system
MSVIDEO.DLL: 16-bit Windows video system
OLE2.DLL: OLE 2.0 libraries
OLE32.DLL: 32-bit OLE 2.0 components
OLE2CONV.DLL: Import filter for graphics files
OLE2DISP.DLL, OLE2NLS.DLL: OLE 2.1 16- and 32-bit interoperability
OLE2PROX.DLL: Proxy server for OLE 2.0
OLE2THK.DLL: Thunking for OLE 2.0
OLEAUT32.DLL 32-bit OLE 2.0 automation
OLECLI.DLL: 16-bit OLE client
OLECLI32.DLL: 32-bit OLE client
OLEDLG.DLL: OLE 2.0 user interface support
OLESVR.DLL: 16-bit OLE server libraries
OLESVR32.DLL: 32-bit OLE server libraries
PSAPI.DLL: Proces Status API libraries
RASAPI16.DLL: 16-bit Remote Access Services libraries
RASAPI32.DLL: 32-bit Remote Access Services libraries
SHELL.DLL: 16-bit Windows shell used by Setup
SHELL32.DLL: 32-bit Windows shell (COM object?)
TAPI/TAPI32/TAPIADDR: Telephone API (for Modems)
W32SKRNL: Win32s Kernel ? (not in use for Win95 and up!)
WIN32S16.DLL: Application compatibility for Win32s
WIN87EM.DLL: 80387 math-emulation libraries
WINASPI.DLL: Advanced SCSI Peripheral Interface or ASPI libraries
WINDEBUG.DLL Windows debugger

74

Chapter 7. Overview

WINMM.DLL: Libraries for multimedia thunking
WING.DLL: Libraries required to "draw" graphics
WINSOCK.DLL: Sockets APIs
WINSPOOL.DLL: Print spooler libraries
WNASPI32.DLL: 32-bit ASPI libraries
WSOCK32.DLL: 32-bit sockets APIs

75

Chapter 8. Debug Logging
Written by Dimitrie O. Paun <dimi@cs.toronto.edu >, 28 Mar 1998

(Extracted fromwine/documentation/debug-msgs)

Note: The new debugging interface can be considered to be stable, with the
exception of the in-memory message construction functions. However, there is
still a lot of work to be done to polish things up. To make my life easier, please
follow the guidelines described in this document.

Important: Read this document before writing new code. DO NOT USE fprintf

(or printf) to output things. Also, instead of writing FIXMEs in the source, output
a FIXME message if you can.

At the end of the document, there is a "Style Guide" for debugging messages.
Please read it.

8.1. Debugging classes
There are 4 types (or classes) of debugging messages:

FIXME

Messages in this class relate to behavior of Wine that does not correspond to
standard Windows behavior and that should be fixed.

Examples: stubs, semi-implemented features, etc.

76

Chapter 8. Debug Logging

ERR

Messages in this class relate to serious errors in Wine. This sort of messages are
close to asserts -- that is, you should output an error message when the code
detects a condition which should not happen. In other words, important things that
are not warnings (see below), are errors.

Examples: unexpected change in internal state, etc.

WARN

These are warning messages. You should report a warning when something
unwanted happen but the function behaves properly. That is, output a warning
when you encounter something unexpected (ex: could not open a file) but the
function deals correctly with the situation (that is, according to the docs). If you
do not deal correctly with it, output a fixme.

Examples: fail to access a resource required by the app, etc.

TRACE

These are detailed debugging messages that are mainly useful to debug a
component. These are usually turned off.

Examples: everything else that does not fall in one of the above mentioned
categories and the user does not need to know about it.

The user has the capability to turn on or off messages of a particular type. You can
expect the following patterns of usage (but note that any combination is possible):

• when you debug a component, all types (TRACE, WARN, ERR, FIXME) will be enabled.

• during the pre-alpha (maybe alpha) stage of Wine, most likely theTRACEclass will
be disabled by default, but all others (WARN, ERR, FIXME) will be enabled by default.

77

Chapter 8. Debug Logging

• when Wine will become stable, most likely theTRACEandWARNclasses will be
disabled by default, but allERRs andFIXMEs will be enabled.

• in some installations that want the smallest footprint and where the debug
information is of no interest, all classes may be disabled by default.

Of course, the user will have the runtime ability to override these defaults. However,
this ability may be turned off and certain classes of messages may be completely
disabled at compile time to reduce the size of Wine.

8.2. Debugging channels
Also, we divide the debugging messages on a component basis. Each component is
assigned a debugging channel. The identifier of the channel must be a valid C identifier
but note that it may also be a reserved word like int or static.

Examples of debugging channels:reg , updown , string

We will refer to a generic channel asxxx .

Note: for those who know the old interface, the channel/type is what followed the
_ in the dprintf_xxx statements. For example, to output a message on the
debugging channel reg in the old interface you would had to write:

dprintf_reg(stddeb, "Could not access key!\n");

In the new interface, we drop the stddeb as it is implicit. However, we add an
orthogonal piece of information to the message: its class. This is very important
as it will allow us to selectively turn on or off certain messages based on the type
of information they report. For this reason it is essential to choose the right class
for the message. Anyhow, suppose we figured that this message should belong in
the WARNclass, so in the new interface, you write:

WARN(reg, "Could not access key!\n");

78

Chapter 8. Debug Logging

8.3. How to use it
So, to output a message (classYYY) on channelxxx , do:

#include "debug.h"

....

YYY(xxx, "<message>", ...);

Some examples from the code:

#include "debug.h"

...

TRACE(crtdll, "CRTDLL_setbuf(file %p buf %p)", file, buf);

WARN(aspi, "Error opening device errno=%d", save_error);

If you need to declare a new debugging channel, use it in your code and then do:

%tools/make_debug

in the root directory of Wine. Note that this will result in almost complete
recompilation of Wine.

1. Please pay attention to which class you assign the message. There are only
4 classes, so it is not hard. The reason it is important to get it right is that too

79

Chapter 8. Debug Logging

much information is no information. For example, if you put things into the
WARNclass that should really be in the TRACEclass, the output will be too big
and this will force the user to turn warnings off. But this way he will fail to see
the important ones. Also, if you put warnings into the TRACEclass lets say, he
will most likely miss those because usually the TRACEclass is turned off. A
similar argument can be made if you mix any other two classes.

2. All lines should end with a newline. If you can NOT output everything that
you want in the line with only one statement, then you need to build the string
in memory. Please read the section below "In-memory messages" on the
preferred way to do it. PLEASE USE THAT INTERFACE TO BUILD
MESSAGES IN MEMORY. The reason is that we are not sure that we like it
and having everything in one format will facilitate the (automatic) translation
to a better interface.

8.4. Are we debugging?
To test whether the debugging output of classyyy on channelxxx is enabled, use:

TRACE_ON to test if TRACE is enabled
WARN_ON to test if WARN is enabled
FIXME_ON to test if FIXME is enabled
ERR_ON to test if ERR is enabled

Examples:

if(TRACE_ON(atom)){
...blah...

}

80

Chapter 8. Debug Logging

Note: You should normally need to test only if TRACE_ON. At present, none of the
other 3 tests (except for ERR_ONwhich is used only once!) are used in Wine.

8.5. In-memory messages
If you NEED to build the message from multiple calls, you need to build it in memory.
To do that, you should use the following interface:

1. declare a string (where you are allowed to declare C variables) as follows:

dbg_decl_str(name, len);

wherename is the name of the string (you should use the channel name on which
you are going to output it)

2. print in it with:

dsprintf(name, "<message>", ...);

which is just like asprintf function but instead of a C string as first parameter it
takes the name you used to declare it.

3. obtain a pointer to the string with:dbg_str(name)

4. reset the string (if you want to reuse it with):

dbg_reset_str(name);

Example (modified from the code):

void some_func(tabs)
{

INT32 i;
LPINT16 p = (LPINT16)tabs;

81

Chapter 8. Debug Logging

dbg_decl_str(listbox, 256); /* declare the string */

for (i = 0; i < descr->nb_tabs; i++) {
descr->tabs[i] = *p++<<1;
if(TRACING(listbox)) /* write in it only if

dsprintf(listbox, "%hd ", descr->tabs[i]); /* we are gonna out-
put it */

}
TRACE(listbox, "Listbox %04x: settabstops %s",

wnd->hwndSelf, dbg_str(listbox)); /* output the whole thing */
}

If you need to use it two times in the same scope do like this:

void some_func(tabs)
{

INT32 i;
LPINT16 p = (LPINT16)tabs;
dbg_decl_str(listbox, 256); /* declare the string */

for (i = 0; i < descr->nb_tabs; i++) {
descr->tabs[i] = *p++<<1;
if(TRACING(listbox)) /* write in it only if

dsprintf(listbox, "%hd ", descr->tabs[i]); /* we are gonna out-
put it */

}
TRACE(listbox, "Listbox %04x: settabstops %s\n",

wnd->hwndSelf, dbg_str(listbox)); /* output the whole thing */

dbg_reset_str(listbox); /* !!!reset the string!!! */
for (i = 0; i < descr->extrainfo_nr; i++) {

descr->extrainfo = *p+1;
if(TRACING(listbox)) /* write in it only if

dsprintf(listbox,"%3d ",descr->extrainfo); /* we are gonna out-
put it */

}

82

Chapter 8. Debug Logging

TRACE(listbox, "Listbox %04x: extrainfo %s\n",
wnd->hwndSelf, dbg_str(listbox)); /* output the whole thing */

}

Important: As I already stated, I do not think this will be the ultimate interface for
building in-memory debugging messages. In fact, I do have better ideas which I
hope to have time to implement for the next release. For this reason, please try
not to use it. However, if you need to output a line in more than one dprintf_xxx

calls, then USE THIS INTERFACE. DO NOT use other methods. This way, I will
easily translate everything to the new interface (when it will become available).
So, if you need to use it, then follow the following guidelines:

• wrap calls to dsprintf with a

if(YYY(xxx))
dsprintf(xxx,...);

Of course, if the call to dsprintf is made from within a function which you
know is called only if YYY(xxx) is true, for example if you call it only like this:

if(YYY(xxx))
print_some_debug_info();

then you need not (and should not) wrap calls to dsprintf with the before
mentioned if .

• name the string EXACTLY like the debugging channel on which is going to be
output. Please see the above example.

83

Chapter 8. Debug Logging

8.6. Resource identifiers
Resource identifiers can be either strings or numbers. To make life a bit easier for
outputting these beasts (and to help you avoid the need to build the message in
memory), I introduced a new function calleddebugres .

The function is defined indebugstr.h and has the following prototype:

LPSTR debugres(const void *id);

It takes a pointer to the resource id and returns a nicely formatted string of the
identifier. If the high word of the pointer is0, then it assumes that the identifier is a
number and thus returns a string of the form:

#xxxx

wherexxxx are 4 hex-digits representing the low word ofid .

If the high word of the pointer is not0, then it assumes that the identifier is a string and
thus returns a string of the form:

’<identifier>’

Thus, to use it, do something on the following lines:

#include "debug.h"

...

YYY(xxx, "resource is %s", debugres(myresource));

84

Chapter 8. Debug Logging

8.7. The --debugmsg command line option
So, the--debugmsg command line option has been changed as follows:

• the new syntax is:--debugmsg [yyy]#xxx[,[yyy1]#xxx1]* where# is
either+ or -

• when the optional class argument (yyy) is not present, then the statement will
enable(+)/disable(-) all messages for the given channel (xxx) on all classes. For
example:

--debugmsg +reg,-file

enables all messages on thereg channel and disables all messages on thefile

channel. This is same as the old semantics.

• when the optional class argument (yyy) is present, then the statement will enable
(+)/disable(-) messages for the given channel (xxx) only on the given class. For
example:

--debugmsg trace+reg,warn-file

enables trace messages on thereg channel and disables warning messages on the
file channel.

• also, the pseudo-channel all is also supported and it has the intuitive semantics:

--debugmsg +all -- enables all debug messages
--debugmsg -all -- disables all debug messages
--debugmsg yyy+all -- enables debug messages for class yyy on all

channels.
--debugmsg yyy-all -- disables debug messages for class yyy on all

channels.

85

Chapter 8. Debug Logging

So, for example:

--debugmsg warn-all -- disables all warning messages.

Also, note that at the moment:

• theFIXME andERRclasses are enabled by default

• theTRACEandWARNclasses are disabled by default

8.8. Compiling Out Debugging Messages
To compile out the debugging messages, provideconfigurewith the following options:

--disable-debug -- turns off TRACE, WARN, and FIXME (and DUMP).
--disable-trace -- turns off TRACE only.

This will result in an executable that, when stripped, is about 15%-20% smaller. Note,
however, that you will not be able to effectively debug Wine without these messages.

This feature has not been extensively tested--it may subtly break some things.

8.9. A Few Notes on Style
This new scheme makes certain things more consistent but there is still room for
improvement by using a common style of debug messages. Before I continue, let me
note that the output format is the following:

yyy:xxx:fff <message>

where:

86

Chapter 8. Debug Logging

yyy = the class (fixme, err, warn, trace)
xxx = the channel (atom, win, font, etc)
fff = the function name

these fields are output automatically. All you have to provide is the <message> part.

So here are some ideas:

• do NOT include the name of the function: it is included automatically

• if you want to output the parameters of the function, do it as the first thing and
include them in parentheses, like this:

YYY(xxx, "(%d,%p,etc)...\n", par1, par2, ...);

• for stubs, you should output aFIXME message. I suggest this style:

FIXME(xxx, "(%x,%d...): stub\n", par1, par2, ...);

That is, you output the parameters, then a : and then a string containing the word
"stub". I’ve seen "empty stub", and others, but I think that just "stub" suffices.

• output 1 and ONLY 1 line per message. That is, the format string should contain
only 1 \n and it should always appear at the end of the string. (there are many
reasons for this requirement, one of them is that each debug macro adds things to the
beginning of the line)

• if you want to name a value, use= and NOT: . That is, instead of saying:

FIXME(xxx, "(fd: %d, file: %s): stub\n", fd, name);

say:

FIXME(xxx, "(fd=%d, file=%s): stub\n", fd, name);

use: to separate categories.

87

Chapter 8. Debug Logging

• try to avoid the style:

FIXME(xxx, "(fd=%d, file=%s)\n", fd, name);

but use:

FIXME(xxx, "(fd=%d, file=%s): stub\n", fd, name);

The reason is that if you want togrep for things, you would search forFIXME but in
the first case there is no additional information available, where in the second one,
there is (e.g. the word stub)

• if you output a string s that might contain control characters, or ifs may beNULL,
usedebugstr_a (for ASCII strings, ordebugstr_w for Unicode strings) to convert
s to a C string, like this:

HANDLE32 WINAPI YourFunc(LPCSTR s)
{

FIXME(xxx, "(%s): stub\n", debugstr_a(s));
}

• if you want to output a resource identifier, use debugres to convert it to a string first,
like this:

HANDLE32 WINAPI YourFunc(LPCSTR res)
{

FIXME(xxx, "(res=%s): stub\n", debugres(s));
}

if the resource identifier is a SEGPTR, usePTR_SEG_TO_LINto get a liner pointer
first:

HRSRC16 WINAPI FindResource16(HMODULE16 hModule, SEGPTR name, SEG-
PTR type)
{
[...]

TRACE(resource, "module=%04x name=%s type=%s\n",

88

Chapter 8. Debug Logging

hModule, debugres(PTR_SEG_TO_LIN(name)),
debugres(PTR_SEG_TO_LIN(type)));

[...]
}

• for messages intended for the user (specifically those that report errors in
wine.conf), use theMSGmacro. Use it like aprintf :

MSG("Definition of drive %d is incorrect!\n", drive);

However, note that there areveryfew valid uses of this macro. Most messages are
debugging messages, so chances are you will not need to use this macro. Grep the
source to get an idea where it is appropriate to use it.

• For structure dumps, use theDUMPmacro. Use it like aprintf , just like theMSG

macro. Similarly, there are only a few valid uses of this macro. Grep the source to
see when to use it.

89

Chapter 9. COM/OLE in Wine

9.1. COM/OLE Architecture in Wine
The section goes into detail about how COM/OLE2 are implemented in Wine.

9.2. Using Binary OLE components in Wine
This section describes how to import pre-compiled COM/OLE components...

9.3. Writing OLE Components for Wine
Based on the comments inwine/include/wine/obj_base.h .

This section describes how to create your own natively compiled COM/OLE
components.

9.3.1. Macros to define a COM interface
The goal of the following set of definitions is to provide a way to use the same header
file definitions to provide both a C interface and a C++ object oriented interface to
COM interfaces. The type of interface is selected automatically depending on the
language but it is always possible to get the C interface in C++ by defining
CINTERFACE.

It is based on the following assumptions:

• all COM interfaces derive from IUnknown, this should not be a problem.

90

Chapter 9. COM/OLE in Wine

• the header file only defines the interface, the actual fields are defined separately in
the C file implementing the interface.

The natural approach to this problem would be to make sure we get a C++ class and
virtual methods in C++ and a structure with a table of pointer to functions in C.
Unfortunately the layout of the virtual table is compiler specific, the layout of g++
virtual tables is not the same as that of an egcs virtual table which is not the same as
that generated by Visual C+. There are workarounds to make the virtual tables
compatible via padding but unfortunately the one which is imposed to the WINE
emulator by the Windows binaries, i.e. the Visual C++ one, is the most compact of all.

So the solution I finally adopted does not use virtual tables. Instead I use inline non
virtual methods that dereference the method pointer themselves and perform the call.

Let’s take Direct3D as an example:

#define ICOM_INTERFACE IDirect3D
#define IDirect3D_METHODS \

ICOM_METHOD1(HRESULT,Initialize, REFIID,) \
ICOM_METHOD2(HRESULT,EnumDevices, LPD3DENUMDEVICESCALLBACK„ LPVOID,) \
ICOM_METHOD2(HRESULT,CreateLight, LPDIRECT3DLIGHT*„ IUnknown*,) \
ICOM_METHOD2(HRESULT,CreateMaterial,LPDIRECT3DMATERIAL*„ IUn-

known*,) \
ICOM_METHOD2(HRESULT,CreateViewport,LPDIRECT3DVIEWPORT*„ IUn-

known*,) \
ICOM_METHOD2(HRESULT,FindDevice, LPD3DFINDDEVICESEARCH„ LPD3DFINDDEVICERESULT,)

#define IDirect3D_IMETHODS \
IUnknown_IMETHODS \
IDirect3D_METHODS

ICOM_DEFINE(IDirect3D,IUnknown)
#undef ICOM_INTERFACE

#ifdef ICOM_CINTERFACE
// *** IUnknown methods *** //
#define IDirect3D_QueryInterface(p,a,b) ICOM_CALL2(QueryInterface,p,a,b)
#define IDirect3D_AddRef(p) ICOM_CALL (AddRef,p)
#define IDirect3D_Release(p) ICOM_CALL (Release,p)
// *** IDirect3D methods *** //

91

Chapter 9. COM/OLE in Wine

#define IDirect3D_Initialize(p,a) ICOM_CALL1(Initialize,p,a)
#define IDirect3D_EnumDevices(p,a,b) ICOM_CALL2(EnumDevice,p,a,b)
#define IDirect3D_CreateLight(p,a,b) ICOM_CALL2(CreateLight,p,a,b)
#define IDirect3D_CreateMaterial(p,a,b) ICOM_CALL2(CreateMaterial,p,a,b)
#define IDirect3D_CreateViewport(p,a,b) ICOM_CALL2(CreateViewport,p,a,b)
#define IDirect3D_FindDevice(p,a,b) ICOM_CALL2(FindDevice,p,a,b)
#endif

Comments:

The ICOM_INTERFACE macro is used in the ICOM_METHOD macros to define the
type of the ’this’ pointer. Defining this macro here saves us the trouble of having to
repeat the interface name everywhere. Note however that because of the way macros
work, a macro like ICOM_METHOD1 cannot use ’ICOM_INTERFACE##_VTABLE’
because this would give ’ICOM_INTERFACE_VTABLE’ and not
’IDirect3D_VTABLE’.

ICOM_METHODS defines the methods specific to this interface. It is then aggregated
with the inherited methods to form ICOM_IMETHODS.

ICOM_IMETHODS defines the list of methods that are inheritable from this interface.
It must be written manually (rather than using a macro to generate the equivalent code)
to avoid macro recursion (which compilers don’t like).

The ICOM_DEFINE finally declares all the structures necessary for the interface. We
have to explicitly use the interface name for macro expansion reasons again. Inherited
methods are inherited in C by using the IDirect3D_METHODS macro and the parent’s
Xxx_IMETHODS macro. In C++ we need only use the IDirect3D_METHODS since
method inheritance is taken care of by the language.

In C++ the ICOM_METHOD macros generate a function prototype and a call to a
function pointer method. This means using once ’t1 p1, t2 p2, ...’ and once ’p1, p2’
without the types. The only way I found to handle this is to have one ICOM_METHOD
macro per number of parameters and to have it take only the type information (with
const if necessary) as parameters. The ’undef ICOM_INTERFACE’ is here to remind
you that using ICOM_INTERFACE in the following macros will not work. This time
it’s because the ICOM_CALL macro expansion is done only once the ’IDirect3D_Xxx’
macro is expanded. And by that time ICOM_INTERFACE will be long gone anyway.

92

Chapter 9. COM/OLE in Wine

You may have noticed the double commas after each parameter type. This allows you
to put the name of that parameter which I think is good for documentation. It is not
required and since I did not know what to put there for this example (I could only find
doc about IDirect3D2), I left them blank.

Finally the set of ’IDirect3D_Xxx’ macros is a standard set of macros defined to ease
access to the interface methods in C. Unfortunately I don’t see any way to avoid having
to duplicate the inherited method definitions there. This time I could have used a trick
to use only one macro whatever the number of parameters but I prefered to have it work
the same way as above.

You probably have noticed that we don’t define the fields we need to actually
implement this interface: reference count, pointer to other resources and miscellaneous
fields. That’s because these interfaces are just that: interfaces. They may be
implemented more than once, in different contexts and sometimes not even in Wine.
Thus it would not make sense to impose that the interface contains some specific fields.

9.3.2. Bindings in C
In C this gives:

typedef struct IDirect3DVtbl IDirect3DVtbl;
struct IDirect3D {

IDirect3DVtbl* lpVtbl;
};
struct IDirect3DVtbl {

HRESULT (*fnQueryInterface)(IDirect3D* me, REFIID riid, LPVOID* ppvObj);
ULONG (*fnAddRef)(IDirect3D* me);
ULONG (*fnRelease)(IDirect3D* me);
HRESULT (*fnInitialize)(IDirect3D* me, REFIID a);
HRESULT (*fnEnumDevices)(IDirect3D* me, LPD3DENUMDEVICESCALLBACK a, LPVOID b);
HRESULT (*fnCreateLight)(IDirect3D* me, LPDIRECT3DLIGHT* a, IUn-

known* b);
HRESULT (*fnCreateMaterial)(IDirect3D* me, LPDIRECT3DMATERIAL* a, IUn-

known* b);

93

Chapter 9. COM/OLE in Wine

HRESULT (*fnCreateViewport)(IDirect3D* me, LPDIRECT3DVIEWPORT* a, IUn-
known* b);

HRESULT (*fnFindDevice)(IDirect3D* me, LPD3DFINDDEVICESEARCH a, LPD3DFINDDEVICERESULT b);
};

#ifdef ICOM_CINTERFACE
// *** IUnknown methods *** //
#define IDirect3D_QueryInterface(p,a,b) (p)->lpVtbl->fnQueryInterface(p,a,b)
#define IDirect3D_AddRef(p) (p)->lpVtbl->fnAddRef(p)
#define IDirect3D_Release(p) (p)->lpVtbl->fnRelease(p)
// *** IDirect3D methods *** //
#define IDirect3D_Initialize(p,a) (p)->lpVtbl->fnInitialize(p,a)
#define IDirect3D_EnumDevices(p,a,b) (p)->lpVtbl->fnEnumDevice(p,a,b)
#define IDirect3D_CreateLight(p,a,b) (p)->lpVtbl->fnCreateLight(p,a,b)
#define IDirect3D_CreateMaterial(p,a,b) (p)->lpVtbl->fnCreateMaterial(p,a,b)
#define IDirect3D_CreateViewport(p,a,b) (p)->lpVtbl->fnCreateViewport(p,a,b)
#define IDirect3D_FindDevice(p,a,b) (p)->lpVtbl->fnFindDevice(p,a,b)
#endif

Comments:

IDirect3D only contains a pointer to the IDirect3D virtual/jump table. This is the only
thing the user needs to know to use the interface. Of course the structure we will define
to implement this interface will have more fields but the first one will match this
pointer.

The code generated by ICOM_DEFINE defines both the structure representing the
interface and the structure for the jump table. ICOM_DEFINE uses the parent’s
Xxx_IMETHODS macro to automatically repeat the prototypes of all the inherited
methods and then uses IDirect3D_METHODS to define the IDirect3D methods.

Each method is declared as a pointer to function field in the jump table. The
implementation will fill this jump table with appropriate values, probably using a static
variable, and initialize the lpVtbl field to point to this variable.

The IDirect3D_Xxx macros then just derefence the lpVtbl pointer and use the function
pointer corresponding to the macro name. This emulates the behavior of a virtual table
and should be just as fast.

94

Chapter 9. COM/OLE in Wine

This C code should be quite compatible with the Windows headers both for code that
uses COM interfaces and for code implementing a COM interface.

9.3.3. Bindings in C++
And in C++ (with gcc’s g++):

typedef struct IDirect3D: public IUnknown {
private: HRESULT (*fnInitialize)(IDirect3D* me, REFIID a);
public: inline HRESULT Initialize(REFIID a) { return ((IDirect3D*)t.lpVtbl)-

>fnInitialize(this,a); };
private: HRESULT (*fnEnumDevices)(IDirect3D* me, LPD3DENUMDEVICESCALLBACK a, LPVOID b);
public: inline HRESULT EnumDevices(LPD3DENUMDEVICESCALLBACK a, LPVOID b)

{ return ((IDirect3D*)t.lpVtbl)->fnEnumDevices(this,a,b); };
private: HRESULT (*fnCreateLight)(IDirect3D* me, LPDIRECT3DLIGHT* a, IUn-

known* b);
public: inline HRESULT CreateLight(LPDIRECT3DLIGHT* a, IUnknown* b)

{ return ((IDirect3D*)t.lpVtbl)->fnCreateLight(this,a,b); };
private: HRESULT (*fnCreateMaterial)(IDirect3D* me, LPDIRECT3DMATERIAL* a, IUn-

known* b);
public: inline HRESULT CreateMaterial(LPDIRECT3DMATERIAL* a, IUn-

known* b)
{ return ((IDirect3D*)t.lpVtbl)->fnCreateMaterial(this,a,b); };

private: HRESULT (*fnCreateViewport)(IDirect3D* me, LPDIRECT3DVIEWPORT* a, IUn-
known* b);

public: inline HRESULT CreateViewport(LPDIRECT3DVIEWPORT* a, IUn-
known* b)

{ return ((IDirect3D*)t.lpVtbl)->fnCreateViewport(this,a,b); };
private: HRESULT (*fnFindDevice)(IDirect3D* me, LPD3DFINDDEVICESEARCH a, LPD3DFINDDEVICERESULT b);
public: inline HRESULT FindDevice(LPD3DFINDDEVICESEARCH a, LPD3DFINDDEVICERESULT b)

{ return ((IDirect3D*)t.lpVtbl)->fnFindDevice(this,a,b); };
};

Comments:

95

Chapter 9. COM/OLE in Wine

In C++ IDirect3D does double duty as both the virtual/jump table and as the interface
definition. The reason for this is to avoid having to duplicate the mehod definitions:
once to have the function pointers in the jump table and once to have the methods in the
interface class. Here one macro can generate both. This means though that the first
pointer, t.lpVtbl defined in IUnknown, must be interpreted as the jump table pointer if
we interpret the structure as the interface class, and as the function pointer to the
QueryInterface method, t.fnQueryInterface, if we interpret the structure as the jump
table. Fortunately this gymnastic is entirely taken care of in the header of IUnknown.

Of course in C++ we use inheritance so that we don’t have to duplicate the method
definitions.

Since IDirect3D does double duty, each ICOM_METHOD macro defines both a
function pointer and a non-virtual inline method which dereferences it and calls it. This
way this method behaves just like a virtual method but does not create a true C++
virtual table which would break the structure layout. If you look at the implementation
of these methods you’ll notice that they would not work for void functions. We have to
return something and fortunately this seems to be what all the COM methods do
(otherwise we would need another set of macros).

Note how the ICOM_METHOD generates both function prototypes mixing types and
formal parameter names and the method invocation using only the formal parameter
name. This is the reason why we need different macros to handle different numbers of
parameters.

Finally there is no IDirect3D_Xxx macro. These are not needed in C++ unless the
CINTERFACE macro is defined in which case we would not be here.

This C++ code works well for code that just uses COM interfaces. But it will not work
with C++ code implement a COM interface. That’s because such code assumes the
interface methods are declared as virtual C++ methods which is not the case here.

9.3.4. Implementing a COM interface.
This continues the above example. This example assumes that the implementation is in
C.

96

Chapter 9. COM/OLE in Wine

typedef struct _IDirect3D {
void* lpVtbl;
// ...

} _IDirect3D;

static ICOM_VTABLE(IDirect3D) d3dvt;

// implement the IDirect3D methods here

int IDirect3D_fnQueryInterface(IDirect3D* me)
{

ICOM_THIS(IDirect3D,me);
// ...

}

// ...

static ICOM_VTABLE(IDirect3D) d3dvt = {
ICOM_MSVTABLE_COMPAT_DummyRTTIVALUE
IDirect3D_fnQueryInterface,
IDirect3D_fnAdd,
IDirect3D_fnAdd2,
IDirect3D_fnInitialize,
IDirect3D_fnSetWidth

};

Comments:

We first define what the interface really contains. This is the _IDirect3D structure. The
first field must of course be the virtual table pointer. Everything else is free.

Then we predeclare our static virtual table variable, we will need its address in some
methods to initialize the virtual table pointer of the returned interface objects.

Then we implement the interface methods. To match what has been declared in the
header file they must take a pointer to a IDirect3D structure and we must cast it to an
_IDirect3D so that we can manipulate the fields. This is performed by the ICOM_THIS
macro.

97

Chapter 9. COM/OLE in Wine

Finally we initialize the virtual table.

98

Chapter 10. Wine and OpenGL
Written by Lionel Ulmer <lionel.ulmer@free.fr >, last modification : 2000/06/13

(Extracted fromwine/documentation/opengl)

10.1. What is needed to have OpenGL support
in Wine

Basically, if you have a Linux OpenGL ABI compliant libGL
(http://oss.sgi.com/projects/ogl-sample/ABI/
(http://oss.sgi.com/projects/ogl-sample/ABI/)) installed on your computer, you should
everything that is needed.

To be more clear, I will detail one step after another what theconfigurescript checks.

If, after Wine compiles, OpenGL support is not compiled in, you can always check
config.log to see which of the following points failed.

10.1.1. Header files
The needed header files to build OpenGL support in Wine are :

gl.h:

the definition of all OpenGL core functions, types and enumerants

glx.h:

how OpenGL integrates in the X Window environment

glext.h:

the list of all registered OpenGL extensions

99

Chapter 10. Wine and OpenGL

The latter file (glext.h) is, as of now, not necessary to build Wine. But as this file can
be easily obtained from SGI (http://oss.sgi.com/projects/ogl-sample/ABI/glext.h
(http://oss.sgi.com/projects/ogl-sample/ABI/glext.h)), and that all OpenGL should
provide one, I decided to keep it here.

10.1.2. OpenGL library thread-safety
After that, the script checks if the OpenGL library relies or not on the pthread library to
provide thread safety (most ’modern’ OpenGL libraries do).

If the OpenGL library explicitely links in libpthread (you can check it with aldd
libGL.so), you need to force OpenGL support by startingconfigurewith the
--enable-opengl flag.

The reason to this is that Wine contains some hacks done by Ove to cohabit with
pthread that are known to work well in most of the cases (glibc 2.1.x). On the other
hand, we never got Wine to work with glibc 2.0.6. Thus, I deemed preferable to play it
safe : by default, I suppose that the hack won’t work and that it’s the user’s
responsability to enable it.

Anyway, it should be pretty safe to build with--enable-opengl .

10.1.3. OpenGL library itself
To check for the presence of ’libGL’ on the system, the script checks if it defines the
glXCreateContext function. There should be no problem here.

10.1.4. glXGetProcAddressARB function
The core of Wine’s OpenGL implementation (at least for all extensions) is the
glXGetProcAddressARB function. Your OpenGL library needs to have this function
defined for Wine to be able to support OpenGL.

100

Chapter 10. Wine and OpenGL

If your library does not provide it, you are out of luck.

Note: this is not completely true as one could rewrite a glXGetProcAddressARB

replacement using dlopen and friends, but well, telling people to upgrade is
easier :-).

10.2. How to configure
Configuration is quite easy : once OpenGL support has been built in Wine, this internal
OpenGL driver will be used each time an application tries to loadopengl32.dll .

Due to restrictions (that do not exist in Windows) on OpenGL contexts, if you want to
prevent the screen to flicker when using OpenGL applications (all games are using
double-buffered contexts), you need to set the following option in your
~/.wine/config file in the [x11drv] section :

DesktopDoubleBuffered = Y

and to run Wine with the--desktop option.

10.3. How it all works
The core OpenGL function calls are the same between Windows and Linux. So what is
the difficulty to support it in Wine ? Well, there are two different problems :

1. the interface to the windowing system is different for each OS. It’s called ’GLX’
for Linux (well, for X Window) and ’wgl’ for Windows. Thus, one need first to
emulate one (wgl) with the other (GLX).

101

Chapter 10. Wine and OpenGL

2. the calling convention between Windows (the ’Pascal’ convention or ’stdcall’) is
different from the one used on Linux (the ’C’ convention or ’cdecl’). This means
that each call to an OpenGL function must be ’translated’ and cannot be used
directly by the Windows program.

Add to this some braindead programs (using GL calls without setting-up a context or
deleting three time the same context) and you have still some work to do :-)

10.3.1. The Windowing system integration
This integration is done at two levels :

1. At GDI level for all pixel format selection routines (ie choosing if one wants a
depth / alpha buffer, the size of these buffers, ...) and to do the ’page flipping’ in
double buffer mode. This is implemented ingraphics/x11drv/opengl.c (all
these functions are part of Wine’s graphic driver function pointer table and thus
could be reimplented if ever Wine works on another Windowing system than X).

2. In theOpenGL32.DLL itself for all other functionalities (context creation /
deletion, querying of extension functions, ...). This is done in
dlls/opengl32/wgl.c .

10.3.2. The thunks
The thunks are the Wine code that does the calling convention translation and they are
auto-generated by a Perl script. In Wine’s CVS tree, these thunks are already generated
for you. Now, if you want to do it yourself, there is how it all works....

The script is located indlls/opengl32 and is calledmake_opengl. It requires Perl5
to work and takes two arguments :

1. The first is the path to the OpenGL registry. Now, you will all ask ’but what is the
OpenGL registry ?’ :-) Well, it’s part of the OpenGL sample implementation

102

Chapter 10. Wine and OpenGL

source tree from SGI (more informations at this URL :
http://oss.sgi.com/projects/ogl-sample/ (http://oss.sgi.com/projects/ogl-sample/).

To summarize, these files contain human-readable but easily parsed information on
ALL OpenGL core functions and ALL registered extensions (for example the
prototype, the OpenGL version, ...).

2. the second is the OpenGL version to ’simulate’. This fixes the list of functions that
the Windows application can link directly to without having to query them from
the OpenGL driver. Windows is based, for now, on OpenGL 1.1, but the thunks
that are in the CVS tree are generated for OpenGL 1.2.

This option can have three values:1.0 , 1.1 and1.2 .

This script generates three files :

1. opengl32.spec gives Wine’s linker the signature of all function in the
OpenGL32.DLL library so that the application can link them. Only ’core’ functions
are listed here.

2. opengl_norm.c contains all the thunks for the ’core’ functions. Your OpenGL
library must provide ALL the function used in this file as these are not queried at
run time.

3. opengl_ext.c contains all the functions that are not part of the ’core’ functions.
Contrary to the thunks inopengl_norm.c , these functions do not depend at all on
what your libGL provides.

In fact, before using one of these thunks, the Windows program first needs to
’query’ the function pointer. At this point, the corresponding thunk is useless. But
as we first query the same function in libGL and store the returned function pointer
in the thunk, the latter becomes functional.

103

Chapter 10. Wine and OpenGL

10.4. Known problems - shortcomings

10.4.1. Missing GLU32.DLL
GLU is a library that is layered upon OpenGL. There is a 100% correspondence
between thelibGLU.so that is used on Linux andGLU32.DLL .

As for the moment, I did not create a set of thunks to support this library natively in
Wine (it would easy to do, but I am waiting for a better solution than adding another
autogenerated thunk file), you can always download anywhere on the net (it’s free) a
GLU32.DLL file (by browsing, for example, http://ftpsearch.lycos.com/
(http://ftpsearch.lycos.com/)).

10.4.2. OpenGL not detected at configure time
See section (I) for a detailed explanation of theconfigure requirements.

10.4.3. When running an OpenGL application, the screen
flickers

See section (II) for how to create the context double-buffered and thus preventing this
flicker effect.

10.4.4. Wine gives me the following error message :

Extension defined in the OpenGL library but NOT in opengl_ext.c...
Please report (lionel.ulmer@free.fr) !

104

Chapter 10. Wine and OpenGL

This means that the extension requested by the application is found in the libGL used
by Linux (ie the call toglXGetProcAddressARB returns a non-NULLpointer) but that
this string was NOT found in Wine’s extension registry.

This can come from two causes :

1. Theopengl_ext.c file is too old and needs to be generated again.

2. Use of obsolete extensions that are not supported anymore by SGI or of ’private’
extensions that are not registered. An example of the former are
glMTexCoord2fSGIS andglSelectTextureSGIS as used by Quake 2 (and
apparently also by old versions of Half Life). If documentation can be found on
these functions, they can be added to Wine’s extension set.

If you have this, run with--debugmsg +opengl and send me
<lionel.ulmer@free.fr > the TRACE.

10.4.5. libopengl32.so is built but it is still not working
This may be caused by some missing functions required byopengl_norm.c but that
your Linux OpenGL library does not provide.

To check for this, do the following steps :

1. create a dummy.c file :

int main(void) {
return 0;

}

2. try to compile it by linking both libwine and libopengl32 (this command line
supposes that you installed the Wine libraries in/usr/local/lib , YMMV) :

gcc dummy.c -L/usr/local/lib -lwine -lopengl32

105

Chapter 10. Wine and OpenGL

3. if it works, the problem is somewhere else (and you can send me an email). If not,
you could re-generate the thunk files for OpenGL 1.1 for example (and send me
your OpenGL version so that this problem can be detected at configure time).

106

Chapter 11. The Wine Build System
How the Wine build system works, and how to tweak it...

107

Chapter 12. Wine Builtin DLLs
Overview

A more detailed look at Wine’s builtin DLLs...

12.1. Common Controls
Their development status and their UNDOCUMENTED
features and functions

Written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

(Extracted fromwine/documentation/common_controls)

12.1.1. 1. Introduction
The information provided herein is based on the dll version 4.72 which is included in
MS Internet Explorer 4.01.

All information about common controls should be collected in this document.

All Wine programmers are encouraged to add their knowledge to this document.

12.1.2. 2. General Information
Further information about common controls can be found in the MS Platform SDK and
the MS Internet Client SDK (most recent). Information from these SDK’s will NOT be
repeated here. Only information which can NOT be found in these SDK’s will be
collected here. Some information in the SDK’s mentioned above is (intentionally???)
WRONG. Corrections to wrong information will be collected here too.

108

Chapter 12. Wine Builtin DLLs Overview

12.1.2.1. 2.1 Structure sizes of different common control
versions

The common controls have been continously improved in the past. Some of the orignal
structures had to be extended and their size changed. Most of the common control
structures include their size as the first parameter. If a control gets the wrong size in a
message or function a failure is very likely to occur. To avoid this, MS defined new
constants that reflect the structure size of olderCOMCTL32.DLLversions. The following
list shows the structure size constants that are currently defined in the original
COMCTL32.DLL.

Note: Some stuctures are NOT defined in wine’s COMCTL32 yet.

HDITEM_V1_SIZE:

The size of the HDITEM structure in version 4.00.

LVCOLUMN_V1_SIZE:

The size of the LVCOLUMN structure in version 4.00.

LVHITTESTINFO_V1_SIZE :

The size of the LVHITTESTINFO structure in version 4.00.

LVITEM_V1_SIZE :

The size of the LVITEM structure in version 4.00.

NMLVCUSTOMDRAW_V3_SIZE:

The size of the NMLVCUSTOMDRAW structure in version 4.70.

NMTTDISPINFO_V1_SIZE:

The size of the NMTTDISPINFO structure in version 4.00.

109

Chapter 12. Wine Builtin DLLs Overview

NMTVCUSTOMDRAW_V3_SIZE:

The size of the NMTVCUSTOMDRAW structure in version 4.70.

PROPSHEETHEADER_V1_SIZE:

The size of the PROPSHEETHEADER structure in version 4.00.

PROPSHEETPAGE_V1_SIZE:

The size of the PROPSHEETPAGE structure in version 4.00.

REBARBANDINFO_V3_SIZE:

The size of the REBARBANDINFO structure in version 4.70.

TTTOOLINFO_V1_SIZE:

The size of the TOOLINFO structure in version 4.00.

TVINSERTSTRUCT_V1_SIZE:

The size of the TVINSERTSTRUCT structure in version 4.00.

12.1.3. 3. Controls
This section describes the development status of the common controls.

12.1.3.1. 3.1 Animation Control

Author:

Dummy written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

Status:

Dummy control. No functionality.

110

Chapter 12. Wine Builtin DLLs Overview

Notes:

Author needed!! Any volunteers??

12.1.3.2. 3.2 Combo Box Ex Control

Author:

Dummy written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

Status:

Dummy control. No functionality.

Notes:

Author needed!! Any volunteers??

12.1.3.3. 3.3 Date and Time Picker Control

Author:

Dummy written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

Status:

Dummy control. No functionality.

Notes:

Author needed!! Any volunteers??

111

Chapter 12. Wine Builtin DLLs Overview

12.1.3.4. 3.4 Drag List Box Control

Author:

Dummy written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

Status:

Dummy control. No functionality.

Notes:

Author needed!! Any volunteers??

12.1.3.5. 3.5 Flat Scroll Bar Control

Author:

Dummy written by Alex Priem <alex@sci.kun.nl >

Status:

Dummy control. No functionality.

Notes:

Author needed!! Any volunteers??

12.1.3.6. 3.6 Header Control

Author:

Dummy written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

112

Chapter 12. Wine Builtin DLLs Overview

Status:

• Almost finished.

• Unicode notifications are not supported (WM_NOTIFYFORMAT).

• Order array not supported.

12.1.3.7. 3.7 Hot Key Control

Author:

Written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

Status:

Dummy control. No functionality.

Notes:

Author needed!! Any volunteers??

12.1.3.8. 3.8 Image List (no control)

Author:

Dummy written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

Status:

Almost finished.

113

Chapter 12. Wine Builtin DLLs Overview

12.1.3.9. 3.9 IP Address Control

Author:

Dummy written by Eric Kohl <ekohl@abo.rhein-zeitung.de >, Alex Priem
<alex@sci.kun.nl >

Status:

Under construction.

12.1.3.10. 3.10 List View Control

Author:

Dummy written by:

• Written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

• Luc Tourangeau <luc@macadamian.com >

• Koen Deforche <jozef@kotnet.org >

• Francis Beaudet <francis@macadamian.com > and the "Corel Team"

Status:

Under construction.

Notes:

Basic data structure with related messages are supported. No painting supported
yet.

114

Chapter 12. Wine Builtin DLLs Overview

12.1.3.11. 3.11 Month Calendar Control

Author:

Written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

Status:

Dummy control. No functionality.

Notes:

Author needed!! Any volunteers??

12.1.3.12. 3.12 Native font control

Author:

Written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

Status:

Dummy control. No functionality.

Notes:

Author needed!! Any volunteers??

12.1.3.13. 3.13 Pager Control

Author:

Written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

Status:

Under construction. Many missing features.

115

Chapter 12. Wine Builtin DLLs Overview

Notes:

Author needed!! Any volunteers??

12.1.3.14. 3.14 Progress Bar Control

Author:

Original implementation by Dimitrie O. Paun. Fixes and improvements by Eric
Kohl.

Status:

Finished!

12.1.3.15. 3.15 Property Sheet

Author:

Anders Carlsson <anders.carlsson@linux.nu > and Francis Beaudet
<francis@macadamian.com >

Status:

Development in progress.

Notes:

Tab control must be implemented first.

12.1.3.16. 3.16 Rebar Control (Cool Bar)

Author:

Written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

116

Chapter 12. Wine Builtin DLLs Overview

Status:

Development in progress. Many bugs and missing features.

Notes:

Author needed!! Any volunteers??

12.1.3.17. 3.17 Status Bar Control

Author:

Original implementation by Bruce Milner. Fixes and improvements by Eric Kohl.

Status:

Almost finished.

Notes:

Tooltip integration is almost complete.

12.1.3.18. 3.18 Tab Control

Author:

Anders Carlsson <anders.carlsson@linux.nu >

Status:

Development in progress.

117

Chapter 12. Wine Builtin DLLs Overview

12.1.3.19. 3.19 Toolbar Control

Author:

Written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

Status:

Development in progress. Basic functionality is almost done. (dll version 4.0)

12.1.3.20. 3.20 Tooltip Control

Author:

Written by Eric Kohl <ekohl@abo.rhein-zeitung.de >

Status:

Almost finished.

Notes:

Unicode support is incomplete (WM_NOTIFYFORMAT).

12.1.3.21. 3.21 Trackbar Control

Author:

Written by Eric Kohl <ekohl@abo.rhein-zeitung.de > and Alex Priem
<alex@sci.kun.nl >

Status:

Under construction.

118

Chapter 12. Wine Builtin DLLs Overview

12.1.3.22. 3.22 Tree View Control

Author:

Written by Eric Kohl <ekohl@abo.rhein-zeitung.de > and Alex Priem
<alex@sci.kun.nl >, fixes by Aric Stewart <aric@codeweavers.com >

Status:

Quite usable already.

12.1.3.23. 3.23 Updown Control

Author:

Original implementation by Dimitrie O. Paun. Some minor changes by Eric Kohl
<ekohl@abo.rhein-zeitung.de >.

Status:

Unknown.

Notes: Have a look at controls/updown.c for a list of bugs and missing features.

The status is unknown, because I did not have a close look at this control. One
test-program looked quite good, but in Win95’s cdplayer.exe the control does
not show at all.

Any volunteers??

12.1.4. 4. Additional Information
Has to be written...

119

Chapter 12. Wine Builtin DLLs Overview

12.1.5. 5. Undocumented features
There are quite a lot of undocumented functions like:

• DSA (Dynamic Storage Array) functions.

• DPA (Dynamic Pointer Array) functions.

• MRU ("Most Recently Used" List) functions.

• other unknown functions.

Have a look atrelay32/comctl32.spec .

12.1.5.1. 5.1 Dynamic Storage Array (DSA)

The DSA functions are used to store and manage dynamic arrays of fixed size memory
blocks. They are used byTASKMAN.EXE, Explorer, IE4 and other Programs and DLL’s
that are "parts of the Windows Operating System". The implementation should be
complete.

Have a look at the source code to get more information.

12.1.5.2. 5.2 Dynamic Pointer Array (DPA)

Similar to the DSA functions, but they just store pointers. They are used by Explorer,
IE4 and other Programs and DLL’s that are "parts of the Windows Operating System".
The implementation should be complete.

Have a look at the source code to get more information.

12.1.5.3. 5.3 "Most Recently Used" - List (MRU)

Only stubs are implemented to keep Explorer from bailing out.

No more information available at this time!

120

Chapter 12. Wine Builtin DLLs Overview

12.1.5.4. 5.4 MenuHelp

Has to be written...

12.1.5.5. 5.5 GetEffectiveClientRect

Has to be written...

12.1.5.6. 5.6 ShowHideMenuCtl

The official documentation provided by MS is incomplete.

lpInfo :

Both values of the first pair must be the handle to the applications main menu.

12.1.5.7. 5.7 Other undocumented functions

Several other undocumented functions are used by IE4.

String functions: (will be written...)

12.1.6. 6. Epilogue
You see, much work has still to be done. If you are interested in writing a control send
me an e-mail. If you like to fix bugs or add some functionality send an e-mail to the
author of the control.

121

Chapter 13. Wine and Multimedia
This file contains information about the implementation of the multimedia layer of
WINE.

The implementation can be found in the dlls/winmm/ directory (and in many of its
subdirectories), but also in dlls/msacm/ (for the audio compression/decompression
manager) and dlls/msvideo/ (for the video compression/decompression manager).

Written by Eric Pouech <Eric.Pouech@wanadoo.fr > (Last updated: 02/16/2001)

13.1. Overview
The multimedia stuff is split into 3 layers. The low level (device drivers), mid level
(MCI commands) and high level abstraction layers. The low level layer has also some
helper DLLs (like the MSACM/MSACM32 and MSVIDEO/MSVFW32 pairs).

The low level layer may depend on current hardware and OS services (like OSS on
Unix). Mid level (MCI) and high level layers must be written independently from the
hardware and OS services.

There are two specific low level drivers (one for wave input/output, another one for
MIDI output only), whose role is:

• help choosing one low level driver between many

• add the possibility to convert streams (ie ADPCM => PCM)

• add the possibility to filter a stream (adding echo, equalizer... to a wave stream), or
modify the instruments that have to be played (MIDI).

All of those components are defined as DLLs (one by one).

122

Chapter 13. Wine and Multimedia

13.2. Low level layers
Please note that native low level drivers are not currently supported in WINE, because
they either access hardware components or require VxDs to be loaded; WINE does not
correctly supports those two so far.

The following low level layers are implemented (as built-in DLLs):

13.2.1. (Wave form) Audio
MMSYSTEM and WINMM call the real low level audio driver using the
wodMessage/widMessage which handles the different requests.

13.2.1.1. OSS implementation

The low level audio driver is currently only implemented for the OpenSoundSystem
(OSS) as supplied in the Linux and FreeBSD kernels by 4Front Technologies
(http://www.4front-tech.com/). The presence of this driver is checked by configure
(depends on the <sys/soundcard.h> file). Source code resides in
dlls/winmm/wineoss/audio.c.

The implementation contains all features commonly used, but has several problems
(see TODO list).

Note that some Wine specific flag has been added to the wodOpen function, so that the
dsound DLL can share the /dev/dsp access. Currently, this only provides mutual
exclusion for both DLLs. Future extension could add a virtual mixer between the two
output streams.

TODO:

• verify all functions for correctness

• Add virtual mixer between wave-out and dsound interfaces.

123

Chapter 13. Wine and Multimedia

13.2.1.2. Other sub systems

No other is available. Could think of Sun Audio, remote audio systems (using X
extensions, ...), ALSA, EsounD, ArTs...

13.2.2. MIDI
MMSYSTEM and WINMM call the low level driver functions using the midMessage
and the modMessage functions.

13.2.2.1. OSS driver

The low level audio driver is currently only implemented for the OpenSoundSystem
(OSS) as supplied in the Linux and FreeBSD kernels by 4Front Technologies
(http://www.4front-tech.com/). The presence of this driver is checked by configure
(depends on the <sys/soundcard.h> file, and also some specific defines because MIDI is
not supported on all OSes by OSS). Source code resides in dlls/winmm/wineoss/midi.c

Both Midi in and Midi out are provided. The type of MIDI devices supported is
external MIDI port (requires an MIDI capable device - keyboard...) and OPL/2
synthesis (the OPL/2 patches for all instruments are in midiPatch.c).

TODO:

• use better instrument definition for OPL/2 (midiPatch.c) or use existing instrument
definition (from playmidi or kmid) with a .winerc option

• have a look at OPL/3 ?

• implement asynchronous playback of MidiHdr

• implement STREAM’ed MidiHdr (question: how shall we share the code between
the midiStream functions in MMSYSTEM/WINMM and the code for the low level
driver)

124

Chapter 13. Wine and Multimedia

• use a more accurate read mechanism than the one of snooping on timers (like select
on fd)

13.2.2.2. Other sub systems

Could support other MIDI implementation for other sub systems (any idea here ?)

Could also implement a software synthesizer, either inside Wine or using using MIDI
loop back devices in an external program (like timidity). The only trouble is that
timidity is GPL’ed...

13.2.3. Mixer
MMSYSTEM and WINMM call the low level driver functions using the mixMessage
function.

13.2.3.1. OSS implementation

The current implementation uses the OpenSoundSystem mixer, and resides in
dlls/winmm/wineoss/mixer.c

TODO:

• implement notification mechanism when state of mixer’s controls change

125

Chapter 13. Wine and Multimedia

13.2.3.2. Other sub systems

TODO:

• implement mixing low level drivers for other mixers (ALSA...)

13.2.4. Aux
The AUX low level driver is the predecessor of the mixer driver (introduced in Win 95).

13.2.4.1. OSS driver

The implementation uses the OSS mixer API, and is incomplete.

TODO:

• verify the implementation

• check with what is done in mixer

• open question: shall we implement it on top of the low level mixer functions ?

13.2.5. Wine OSS
All the OSS dependent functions are stored into the WineOSS DLL. It still lack a
correct installation scheme (as any multimedia device under Windows), so that all the
correct keys are created in the registry. This requires an advanced model since, for
example, the number of wave out devices can only be known on the destination system
(depends on the sound card driven by the OSS interface). A solution would be to install

126

Chapter 13. Wine and Multimedia

all the multimedia drivers through the SETUPX DLL; this is not doable yet (the
multimedia extension to SETUPX isn’t written yet).

13.2.6. Joystick
The API consists of the joy* functions found in dlls/winmm/joystick/joystick.c. The
implementation currently uses the Linux joystick device driver API. It is lacking
support for enhanced joysticks and has not been extensively tested.

TODO:

• better support of enhanced joysticks (Linux 2.2 interface is available)

• support more joystick drivers (like the XInput extension)

• should load joystick DLL as any other driver (instead of hardcoding) the driver’s
name, and load it as any low lever driver.

13.2.7. Wave mapper (msacm.drv)
The Wave mapper device allows to load on-demand codecs in order to perform
software conversion for the types the actual low level driver (hardware). Those codecs
are provided through the standard ACM drivers.

13.2.7.1. Built-in

A first working implementation for wave out as been provided (wave in exists, but
doesn’t allow conversion).

Wave mapper driver implementation can be found in dlls/winmm/wavemap/ directory.
This driver heavily relies on MSACM and MSACM32 DLLs which can be found in
dlls/msacm and dlls/msacm32. Those DLLs load ACM drivers which provide the

127

Chapter 13. Wine and Multimedia

conversion to PCM format (which is normally supported by low level drivers).
ADPCM, MP3... fit into the category of non PCM formats.

There is currently no built-in ACM driver in Wine, so you must use native ones if
you’re looking for non PCM playback.

TODO:

• check for correctness and robustness

13.2.7.2. Native

Seems to work quite ok (using of course native MSACM/MSACM32 DLLs) Some
other testings report some issues while reading back the registry settings.

13.2.8. MIDI mapper
Midi mapper allows to map each one of 16 MIDI channels to a specific instrument on
an installed sound card. This allows for example to support different MIDI instrument
definition (XM, GM...). It also permits to output on a per channel basis to different
MIDI renderers.

13.2.8.1. Built-in

A built-in MIDI mapper can be found in dlls/winmm/midimap/. It partly provides the
same functionnality as the Windows’ one. It allows to pick up destination channels
(you can map a given channel to a specific playback device channel (see the
configuration bits for more details).

TODO:

128

Chapter 13. Wine and Multimedia

• implement the Midi mapper features (instrument on the fly modification) if it has to
be done as under Windows, it required parsing the midi configuration files (didn’t
find yet the specs)

13.2.8.2. Native

The native midimapper from Win 98 works, but it requires a bunch of keys in the
registry which are not part of the Wine source yet.

TODO:

• add native midimapper keys to the registry to let it run. This will require proper
multimedia driver installation routines.

13.3. Mid level drivers (MCI)
The mid level drivers are represented by some common API functions, mostly
mciSendCommand and mciSendString. See status in chapter 3 for more information.
WINE implements several MCI mid level drivers (status is given for both built-in and
native implementation):

TODO: (apply to all built-in MCI drivers)

• use MMSYSTEM multitasking caps instead of the home grown

129

Chapter 13. Wine and Multimedia

13.3.1. CDAUDIO

13.3.1.1. Built-in

The currently best implementation is the MCI CDAUDIO driver that can be found in
dlls/winmm/mcicda/mcicda.c. The implementation is mostly complete, there have been
no reports of errors. It makes use of misc/cdrom.c Wine internal cdrom interface. This
interface has been ported on Linux, FreeBSD and NetBSD. (Sun should be similar, but
are not implemented.)

A very small example of a cdplayer consists just of the line mciSendString("play
cdaudio",NULL,0,0);

TODO:

• add support for other cdaudio drivers (Solaris...)

• add support for multiple cdaudio devices (plus a decent configuration scheme)

• The DLL is not cleanly separated from the NTDLL DLL. The CDROM interface
should be exported someway (or stored in a Wine only DLL)

13.3.1.2. Native

Native MCICDA works also correctly... It uses the MSCDEX traps (on int 2f).
However, some commands (like seeking) seem to be broken.

130

Chapter 13. Wine and Multimedia

13.3.2. MCIWAVE

13.3.2.1. Built-in

The implementation is rather complete and can be found in
dlls/winmm/mciwave/audio.c. It uses the low level audio API (although not abstracted
correctly).

FIXME:

• The MCI_STATUS command is broken.

TODO:

• check for correctness

• better use of asynchronous playback from low level

• better implement non waiting command (without the MCI_WAIT flag).

13.3.2.2. Native

Native MCIWAVE works also correctly.

13.3.3. MCISEQ (MIDI sequencer)

13.3.3.1. Built-in

The implementation can be found in dlls/winmm/mciseq/mcimidi.c. Except from the
Record command, should be close to completion (except for non blocking commands,

131

Chapter 13. Wine and Multimedia

as many MCI drivers).

TODO:

• implement it correctly

• finish asynchronous commands (especially for reading/record)

• better implement non waiting command (without the MCI_WAIT flag).

• implement the recording features

13.3.3.2. Native

Native MCIMIDI has been working but is currently blocked by scheduling issues
(mmTaskXXX no longer work).

FIXME:

• midiStreamPlay get from time to time an incorrect MidiHdr when using the native
MCI sequencer

13.3.4. MCIANIM

13.3.4.1. Built-in

The implementation is in dlls/winmm/mcianim/.

TODO:

• implement it, probably using xanim or something similar.

132

Chapter 13. Wine and Multimedia

13.3.4.2. Native

Native MCIANIM is reported to work (but requires native video DLLs also, even
though the built-in video DLLs start to work correctly).

13.3.5. MCIAVI

13.3.5.1. Built-in

The implementation is in dlls/winmm/mcianim/. Basic features are present, simple
playing is available, even if lots remain to be done. It rather heavily relies on
MSVIDEO/MSVFW32 DLLs pair to work.

TODO:

• finish the implementation

• fix the audio/video synchronisation issue

13.3.5.2. Native

Native MCIAVI is reported to work (but requires native video DLLs also). Some files
exhibit some deadlock issues anyway.

133

Chapter 13. Wine and Multimedia

13.4. High level layers
The rest (basically the MMSYSTEM and WINMM DLLs entry points). It also provides
the skeleton for the core functionality for multimedia rendering. Note that native
MMSYSTEM and WINMM do not currently work under WINE and there is no plan to
support them (it would require to also fully support VxD, which is not done yet).
Moreover, native DLLs require 16 bit MCI and low level drivers. Wine implements
them as 32 bit drivers. MCI and low level drivers can either be 16 or 32 bit for Wine.

TODO:

• it seems that some program check what’s installed in registry against value returned
by drivers. Wine is currently broken regarding this point.

• add clean-up mechanisms when process detaches from MM DLLs

• prepare for the 16/32 big split

• check thread-safeness for MMSYSTEM and WINMM entry points

• unicode entry points are badly supported

13.4.1. MCI skeleton
Implementation of what is needed to load/unload MCI drivers, and to pass correct
information to them. This is implemented in dlls/winmm/mci.c. The mciSendString
function uses command strings, which are translated into normal MCI commands as
used by mciSendCommand with the help of command tables. The API can be found in
dlls/winmm/mmsystem.c and dlls/winmm/mci.c. The functions there
(mciOpen,mciSysInfo) handle mid level driver allocation and calls. The
implementation is not complete.

MCI drivers are seen as regular WINE modules, and can be loaded (with a correct load
order between built-in, native, elfdll, so), as any other DLL. Please note, that MCI
drivers module names must bear the .drv extension to be correctly understood.

134

Chapter 13. Wine and Multimedia

The list of available MCI drivers is obtained as follows: 1. key ’mci’ in [option] section
from .winerc (or wineconf) mci=CDAUDIO:SEQUENCER gives the list of MCI
drivers (names, in uppercase only) to be used in WINE. 2. This list, when defined,
supersedes the mci key in c:\windows\system.ini

Note that native VIDEODISC crashes when the module is loaded, which occurs when
the MCI procedures are initialised. Make sure that this is not in the list from above. Try
adding: mci=CDAUDIO:SEQUENCER:WAVEAUDIO:AVIVIDEO:MPEGVIDEO to
the [options] section of wine.conf.

TODO:

• correctly handle the MCI_ALL_DEVICE_ID in functions.

• finish mapping 16 <=> 32 of MCI structures and commands

• MCI_SOUND is not handled correctly (should not be sent to MCI driver => same
behavior as MCI_BREAK)

• implement auto-open feature (ie, when a string command is issued for a not yet
opened device, MCI automatically opens it)

13.4.2. MCI multi-tasking
Multi-tasking capabilities used for the MCI drivers are provided in
dlls/winmm/mmsystem.c.

TODO:

• mmTaskXXX functions are currently broken because the 16 loader does not support
binary command lines => provide Wine’s own mmtask.tsk not using binary
command line.

• the Wine native MCI drivers should use the mmThreadXXX API (but since all
built-in MCI drivers are 32 bit, this would require a special flag to mark 32 bit entry

135

Chapter 13. Wine and Multimedia

points)

13.4.3. Timers
It currently uses a service thread, run in the context of the calling process, which should
correctly mimic Windows behavior.

TODO:

• Check if minimal time is satisfactory for most programs.

• current implementation may let a timer tick (once) after it has been destroyed

13.4.4. MMIO
The API consists of the mmio* functions found in mdlls/winmm/mmio.c. Seems to
work ok in most of the cases. There’s some linear/segmented issues with 16 bit code.
There are also some bugs when writting MMIO files.

13.4.5. sndPlayXXX functions
Seem to work correctly.

13.5. Multimedia configuration
Currently, multimedia configuration heavily relies on Win 3.x configuration model.

136

Chapter 13. Wine and Multimedia

13.5.1. Drivers
Since all multimedia drivers (MCI, low level ones, ACM drivers, mappers) are, at first,
drivers they need to appear in the [mci] or [mci32] section of the system.ini file. Since
all drivers are, at first, DLLs, you can choose to load their Wine’s (built-in) or Windows
(native) version.

13.5.2. MCI
A default [mci] section (in system.ini) looks like (see the note above on videodisc):

[mci]
cdaudio=mcicda.drv
sequencer=mciseq.drv
waveaudio=mciwave.drv
avivideo=mciavi.drv
videodisc=mcipionr.drv
vcr=mcivisca.drv
MPEGVideo=mciqtz.drv

By default, the list of loadable MCI drivers will be made of those drivers (in the [mci]
section).

The list of loadable (recognized) MCI drivers can be altered in the [option] section of
wine.conf, like:
mci=CDAUDIO:SEQUENCER:WAVEAUDIO:AVIVIDEO:MPEGVIDEO

TODO:

• use a default registry setting to bypass this (ugly) configuration model

137

Chapter 13. Wine and Multimedia

13.5.3. Low level drivers
Configuration of low level drivers is done with the Wine configuration file. Default
keys are provided in winedefault.reg.

The registry keys used here differ from the Windows’ one. Using the Windows’ one
would require implementing something equivalent to a (real) driver installation. Even if
this would be necessary in a few cases (mainly using MS native multimedia) modules,
there’s no real need so far (or it hasn’t been run into yet).

See the configuration part of the User’s Guide for more details.

13.5.4. Midi mapper
The Midi mapper configuration is the same as on Windows 9x. Under the key

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Multimedia\MIDIMap

if the ’UseScheme’ value is not set, or is set to a null value, the midi mapper will
always use the driver identified by the ’CurrentInstrument’ value. Note: Wine (for
simplicity while installing) allows to define ’CurrentInstrument’ as "#n" (where n is a
number), whereas Windows only allows the real device name here. If UseScheme is set
to a non null value, ’CurrentScheme’ defines the name of the scheme to map the
different channels. All the schemes are available with keys like

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\MediaProperties\PrivateProperties\Midi\Schemes\%name_of_scheme%

For every scheme, under this key, will be a sub-key (which name is usually a two digit
index, starting at 00). Its default value is the name of the output driver, and the value
’Channels’ lists all channels (of the 16 standard MIDI ones) which have to be copied to
this driver.

To provide enhanced configuration and mapping capabilities, each driver can define
under the key

138

Chapter 13. Wine and Multimedia

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\MediaProperties\PrivateProperties\Midi\Ports\%driver_name%

a link to and .IDF file which allows to remap channels internally (for example 9 -> 16),
to change instruments identification, event controlers values. See the source file
dlls/winmm/midimap/midimap.c for the details (this isn’t implemented yet).

13.5.5. ACM
To be done (use the same mechanism as MCI drivers configuration).

13.5.6. VIDC
To be done (use the same mechanism as MCI drivers configuration).

13.6. Multimedia architecture

13.6.1. Windows 9x multimedia architecture

|
Kernel space | Client applications

|
| | | ^ ^ | | | |
| 16>| |<32 16>| |<32 16>| |<32 16>| |<32
| | v | | | v | v
| +----|-----------|---------|------------|----

---+
| | | | | | | WinMM.dll
| | | | | | | 32 bit

139

Chapter 13. Wine and Multimedia

| +----|-----------|---------|------------|----
---+

			^					
+------+		<16				<16		
	16>							
	v v v		v v v					
	+---------------+---+-------------+----------							

---+
		waveInXXX		mciXXX	*playSound*
		waveOutXXX			mmioXXX
		midiInXXX			timeXXX
		midiOutXXX			driverXXX
		midiStreamXXX			
		mixerXXX			

+--------+ | | | auxXXX +---+ +---+ mmThread| |
|MMDEVLDR|<------->| joyXXX | Call back | mmTask | |
+--------+ | | +-----------+-----------+---------+----------

---+
^ | | | ^ ^ | ^
| | | 16>| |<16>| 16>| |<16
v | | v | | v |

+--------+ | | +-------------+ +----------+
| VxD |<------->| *.drv | | mci*.drv |
+--------+ | | +--------------+ +-----------+

| | | msacm.drv | | mciwave |
| | +--------------+ +-----------+
| | | midimap.drv | | mcimidi |
| | +-------------+ +-----------+
| | Low-level drivers | ... | MCI drivers
| | +----------+
| | |
| | |<16
| +-------------------------------+
|

The important points to notice are:

140

Chapter 13. Wine and Multimedia

• all drivers (and most of the core code) is 16 bit

• all hardware (or most of it) dependant code reside in the kernel space (which is not
surprising)

13.6.2. Wine multimedia architecture

|
Kernel space | Client applications

|
| | | ^ ^ | | | |
| 16>| |<32 16>| |<32 16>| |<32 16>| |<32
+------+									
	32/16>								
	v v v		v v v v						
	+---------------+---+-------------+----------								

---+
| | | waveInXXX | | mciXXX | *playSound* |
| | | waveOutXXX | | | mmioXXX | WinMM.dll
| | | midiInXXX | | | timeXXX | 32 bit
| | | midiOutXXX | | | driverXXX |
| | | midiStreamXXX | | | | MMSystem.dll
| | | mixerXXX | | | | 16 bit
| | | auxXXX +---+ +---+ mmThread| |
| | | joyXXX | Call back | mmTask | |
| | +-----------+-----------+---------+----------

---+
| | || ^ ^ || ^^
| | 16>||<32 |<16>| 16>||<32>||<16
| | vv |<32>| vv ||

+---------+ | | +-------------+ +----------+
|HW driver|<------->| *.drv | | mci*.drv |
+---------+ | | +--------------+ +-----------+

| | | msacm.drv | | mciwave |

141

Chapter 13. Wine and Multimedia

| | +--------------+ +-----------+
| | | midimap.drv | | mcimidi |
| | +-------------+ +-----------+
| | Low-level drivers | ... | MCI drivers
| | +----------+
| | |
| | |<32/16
| +-------------------------------+
|

From the previous drawings, the most noticeable differences are:

• low-level drivers can either be 16 or 32 bit

• MCI drivers can either be 16 or 32 bit

• MMSystem and WinMM will be hosted in a single elfglue library

• no link between the MMSystem/WinMM pair on kernel space shall exist. For
example, there will be a low level driver to talk to a UNIX OSS (Open Sound
System) driver

• all built-in drivers (low-level and MCI) will be written as 32 bit drivers

• all native drivers will be 16 bits drivers

13.7. MS ACM Dlls

13.7.1. Contents
tbd

142

Chapter 13. Wine and Multimedia

13.7.2. Status
tbd

13.7.3. Caching
The MSACM/MSACM32 keeps some data cached for all known ACM drivers. Under
the key

Software\Microsoft\AudioCompressionManager\DriverCache\<driver
name>

are kept for values:

• aFormatTagCache which contains an array of DWORD. There are two DWORDs
per cFormatTags entry. The first DWORD contains a format tag value, and the
second the associated maximum size for a WAVEFORMATEX structure. (Fields
dwFormatTag and cbFormatSize from ACMFORMATDETAILS)

• cFilterTags contains the number of tags supported by the driver for filtering.

• cFormatTags contains the number of tags support by the driver for conversions.

• fdwSupport (the same as the one returned from acmDriverDetails).

The cFilterTags, cFormatTags, fdwSupport are the same values as the ones returned
from acmDriverDetails function.

143

III. Advanced Topics
Table of Contents

14. Low-level Implementation...145

15. Porting Wine to new Platforms...156

16. Consoles in Wine..162

17. How to do regression testing using Cvs..168

Chapter 14. Low-level Implementation
Details of Wine’s Low-level Implementation...

14.1. Builtin DLLs
Written by Juergen Schmied <juergen.schmied@metronet.de >

(Extracted fromwine/documentation/internal-dll)

This document describes some points you should know before implementing the
internal counterparts to external DLL’s. Only 32 bit DLL’s are considered.

14.1.1. 1. The LibMain function
This is the way to do some initializing when a process or thread is attached to the dll.
The function name is taken from a*.spec file line:

init YourFunctionName

Then, you have to implement the function:

BOOL32 WINAPI YourLibMain(HINSTANCE32 hinstDLL,
DWORD fdwReason, LPVOID lpvReserved)

{ if (fdwReason==DLL_PROCESS_ATTACH)
{ ...
}
....

}

145

Chapter 14. Low-level Implementation

14.1.2. 2. Using functions from other built-in DLL’s
The problem here is, that you can’t know if you have to call the function from the
internal or the external DLL. If you just call the function you will get the internal
implementation. If the external DLL is loaded the executed program will use the
external DLL and you the internal one. When you -as an example- fill an iconlist placed
in the internal DLL the application won’t get the icons from the external DLL.

To work around this, you should always use a pointer to call such functions:

/* definition of the pointer type*/
void (CALLBACK* pDLLInitComctl)();

/* getting the function address this should be done in the
LibMain function when called with DLL_PROCESS_ATTACH*/

BOOL32 WINAPI Shell32LibMain(HINSTANCE32 hinstDLL, DWORD fdwReason,
LPVOID lpvReserved)

{ HINSTANCE32 hComctl32;
if (fdwReason==DLL_PROCESS_ATTACH)
{ /* load the external / internal DLL*/

hComctl32 = LoadLibrary32A("COMCTL32.DLL");
if (hComctl32)
{ /* get the function pointer */

pDLLInitComctl=GetProcAddress32(hComctl32,"InitCommonControlsEx");

/* check it */
if (pDLLInitComctl)
{ /* use it */

pDLLInitComctl();
}

/* free the DLL / decrease the ref count */
FreeLibrary32(hComctl32);

}
else
{ /* do some panic*/

ERR(shell,"P A N I C error getting functionpointers\n");

146

Chapter 14. Low-level Implementation

exit (1);
}

}
....

14.1.3. 3. Getting resources from a *.rc file linked to the
DLL

< If you know how, write some lines>

14.2. Accelerators
Findings researched by Uwe Bonnes, Ulrich Weigand and Marcus Meissner.

(Extracted fromwine/documentation/accelerators)

Some notes concerning accelerators.

There arethreedifferently sized accelerator structures exposed to the user. The general
layout is:

BYTE fVirt;
WORD key;
WORD cmd;

We now have three different appearances:

1. Accelerators in NE resources. These have a size of 5 byte and do not have any
padding. This is also the internal layout of the global handle HACCEL (16 and 32)
in Windows 95 and WINE. Exposed to the user as Win16 global handles
HACCEL16 and HACCEL32 by the Win16/Win32 API.

147

Chapter 14. Low-level Implementation

2. Accelerators in PE resources. These have a size of 8 byte. Layout is:

BYTE fVirt;
BYTE pad0;
WORD key;
WORD cmd;
WORD pad1;

They are exposed to the user only by direct accessing PE resources.

3. Accelerators in the Win32 API. These have a size of 6 bytes. Layout is:

BYTE fVirt;
BYTE pad0;
WORD key;
WORD cmd;

These are exposed to the user by theCopyAcceleratorTable and
CreateAcceleratorTable functions in the Win32 API.

Why two types of accelerators in the Win32 API? We can only guess, but my best bet is
that the Win32 resource compiler can/does not handle struct packing. Win32 ACCEL is
defined using#pragma(2) for the compiler but without any packing for RC, so it will
assume#pragma(4) .

14.3. File Handles
Written by (???)

(Extracted fromwine/documentation/filehandles)

DOS treats the first 5 file handles as special cases. They map directly tostdin ,
stdout , stderr , stdaux andstdprn . Windows 16 inherits this behavior, and in fact,

148

Chapter 14. Low-level Implementation

win16 handles are interchangable with DOS handles. Some nasty windows programs
even do this!

Windows32 issues file handles starting from1, on the grounds that most GUI processes
don’t need astdin , stdout , etc.

The Wine handle code is implemented in the Win32 style, and the Win16 functions use
two macros to convert to and from the two types.

The macros are defined infile.h as follows:

#define HFILE16_TO_HFILE32(handle) \
(((handle)==0) ? GetStdHandle(STD_INPUT_HANDLE) : \

((handle)==1) ? GetStdHandle(STD_OUTPUT_HANDLE) : \
((handle)==2) ? GetStdHandle(STD_ERROR_HANDLE) : \
((handle)>0x400) ? handle : \
(handle)-5)

#define HFILE32_TO_HFILE16(handle) ({ HFILE32 hnd=handle; \
((hnd==HFILE_ERROR32) ? HFILE_ERROR16 : \
((handle>0x400) ? handle : \

(HFILE16)hnd+5); })

Warning
Be careful not to use the macro HFILE16_TO_HFILE32 on
functions with side-effects, as it will cause them to be evaluated
several times. This could be considered a bug, but the use of this
macro is limited enough not to need a rewrite.

Note: The 0x400 special case above deals with LZW filehandles (see
misc/lzexpand.c).

149

Chapter 14. Low-level Implementation

14.4. Doing A Hardware Trace In Wine
Written by Jonathan Buzzard <jab@hex.prestel.co.uk >

(Extracted fromwine/documentation/ioport-trace-hints)

The primary reason to do this is to reverse engineer a hardware device for which you
don’t have documentation, but can get to work under Wine.

This lot is aimed at parallel port devices, and in particular parallel port scanners which
are now so cheap they are virtually being given away. The problem is that few
manufactures will release any programming information which prevents drivers being
written for Sane, and the traditional technique of using DOSemu to produce the traces
does not work as the scanners invariably only have drivers for Windows.

Please note that I have not been able to get my scanner working properly (a UMAX
Astra 600P), but a couple of people have reported success with at least the Artec AS6e
scanner. I am not in the process of developing any driver nor do I intend to, so don’t
bug me about it. My time is now spent writing programs to set things like battery save
options under Linux on Toshiba laptops, and as such I don’t have any spare time for
writing a driver for a parallel port scanner etc.

Presuming that you have compiled and installed wine the first thing to do is is to enable
direct hardware access to your parallel port. To do this editwine.conf (usually in
/usr/local/etc) and in the ports section add the following two lines

read=0x378,0x379,0x37a,0x37c,0x77a
write=0x378,x379,0x37a,0x37c,0x77a

This adds the necessary access required for SPP/PS2/EPP/ECP parallel port on LPT1.
You will need to adjust these number accordingly if your parallel port is on LPT2 or
LPT0.

When starting wine use the following command line, whereXXXXis the program you
need to run in order to access your scanner, andYYYYis the file your trace will be
stored in:

150

Chapter 14. Low-level Implementation

wine -debugmsg +io XXXX 2> >(sed ’s/^[^:]*:io:[^]* //’ > YYYY)

You will need large amounts of hard disk space (read hundreds of megabytes if you do
a full page scan), and for reasonable performance a really fast processor and lots of
RAM.

You might well find the log compression program that <David Campbell

campbell@torque.net > wrote helpful in reducing the size of the log files. This can
be obtained by the following command:

sh ioport-trace-hints

This should extractshrink.c (which is located at the end of this file. Compile the log
compression program by:

cc shrink.c -o shrink

Use theshrink program to reduce the physical size of the raw log as follows:

cat log | shrink > log2

The trace has the basic form of

XXXX > YY @ ZZZZ:ZZZZ

whereXXXXis the port in hexidecimal being accessed,YY is the data written (or read)
from the port, andZZZZ:ZZZZ is the address in memory of the instruction that
accessed the port. The direction of the arrow indicates whether the data was written or
read from the port.

> data was written to the port
< data was read from the port

151

Chapter 14. Low-level Implementation

My basic tip for interperating these logs is to pay close attention to the addresses of the
IO instructions. Their grouping and sometimes proximity should reveal the presence of
subroutines in the driver. By studying the different versions you should be able to work
them out. For example consider the following section of trace from my UMAX Astra
600P

0x378 > 55 @ 0297:01ec
0x37a > 05 @ 0297:01f5
0x379 < 8f @ 0297:01fa
0x37a > 04 @ 0297:0211
0x378 > aa @ 0297:01ec
0x37a > 05 @ 0297:01f5
0x379 < 8f @ 0297:01fa
0x37a > 04 @ 0297:0211
0x378 > 00 @ 0297:01ec
0x37a > 05 @ 0297:01f5
0x379 < 8f @ 0297:01fa
0x37a > 04 @ 0297:0211
0x378 > 00 @ 0297:01ec
0x37a > 05 @ 0297:01f5
0x379 < 8f @ 0297:01fa
0x37a > 04 @ 0297:0211
0x378 > 00 @ 0297:01ec
0x37a > 05 @ 0297:01f5
0x379 < 8f @ 0297:01fa
0x37a > 04 @ 0297:0211
0x378 > 00 @ 0297:01ec
0x37a > 05 @ 0297:01f5
0x379 < 8f @ 0297:01fa
0x37a > 04 @ 0297:0211

As you can see their is a repeating structure starting at address0297:01ec that
consists of four io accesses on the parallel port. Looking at it the first io access writes a
changing byte to the data port the second always writes the byte0x05 to the control
port, then a value which always seems to0x8f is read from the status port at which
point a byte0x04 is written to the control port. By studying this and other sections of

152

Chapter 14. Low-level Implementation

the trace we can write a C routine that emulates this, shown below with some macros to
make reading/writing on the parallel port easier to read.

#define r_dtr(x) inb(x)
#define r_str(x) inb(x+1)
#define r_ctr(x) inb(x+2)
#define w_dtr(x,y) outb(y, x)
#define w_str(x,y) outb(y, x+1)
#define w_ctr(x,y) outb(y, x+2)

/*
* Seems to be sending a command byte to the scanner
*
*/

int udpp_put(int udpp_base, unsigned char command)
{

int loop,value;

w_dtr(udpp_base, command);
w_ctr(udpp_base, 0x05);

for (loop=0;loop<10;loop++)
if (((value=r_str(udpp_base)) & 0x80)!=0x00) {

w_ctr(udpp_base, 0x04);
return value & 0xf8;
}

return (value & 0xf8) | 0x01;
}

For the UMAX Astra 600P only seven such routines exist (well 14 really, seven for
SPP and seven for EPP). Whether you choose to disassemble the driver at this point to
verify the routines is your own choice. If you do, the address from the trace should help
in locating them in the disassembly.

153

Chapter 14. Low-level Implementation

You will probably then find it useful to write a script/perl/C program to analyse the
logfile and decode them futher as this can reveal higher level grouping of the low level
routines. For example from the logs from my UMAX Astra 600P when decoded futher
reveal (this is a small snippet)

start:
put: 55 8f
put: aa 8f
put: 00 8f
put: 00 8f
put: 00 8f
put: c2 8f
wait: ff
get: af,87
wait: ff
get: af,87
end: cc
start:
put: 55 8f
put: aa 8f
put: 00 8f
put: 03 8f
put: 05 8f
put: 84 8f
wait: ff

From this it is easy to see thatput routine is often grouped together in five successive
calls sending information to the scanner. Once these are understood it should be
possible to process the logs further to show the higher level routines in an easy to see
format. Once the highest level format that you can derive from this process is
understood, you then need to produce a series of scans varying only one parameter
between them, so you can discover how to set the various parameters for the scanner.

The following is theshrink.c program.

cat > shrink.c <<EOF

154

Chapter 14. Low-level Implementation

#include <stdio.h>
#include <string.h>

void
main (void)
{

char buff[256], lastline[256];
int count;

count = 0;
lastline[0] = 0;

while (!feof (stdin))
{

fgets (buff, sizeof (buff), stdin);
if (strcmp (buff, lastline) == 0)

{
count++;

}
else

{
if (count > 1)

fprintf (stdout, "# Last line repeated %i times #\n", count);
fprintf (stdout, "%s", buff);
strcpy (lastline, buff);

count = 1;
}

}
}
EOF

155

Chapter 15. Porting Wine to new
Platforms

Porting Wine to different (UNIX-based) operating systems...

15.1. Porting
written by ???

(Extracted fromwine/documentation/how-to-port)

15.1.1. What is this?
This note is a short description of:

• How to port Wine to your favourite operating system

• Why you probably shouldn’t use #ifdef MyOS

• What to do instead.

This document does not say a thing about how to port Wine to non-386 operating
systems, though. You would need a CPU emulator. Let’s get Wine into a better shape
on 386 first, OK?

15.1.2. Why #ifdef MyOS is probably a mistake.
Operating systems change. Maybe yours doesn’t have thefoo.h header, but maybe a
future version will have it. If you want to #include <foo.h>, it doesn’t matter what
operating system you are using; it only matters whetherfoo.h is there.

156

Chapter 15. Porting Wine to new Platforms

Furthermore, operating systems change names or "fork" into several ones. An #ifdef
MyOs will break over time.

If you use the feature ofautoconf -- the Gnu auto-configuration utility -- wisely, you
will help future porters automatically because your changes will test forfeatures, not
names of operating systems. A feature can be many things:

• existance of a header file

• existance of a library function

• existance of libraries

• bugs in header files, library functions, the compiler, ...

• (you name it)

You will need Gnu Autoconf, which you can get from your friendly Gnu mirror. This
program takes Wine’sconfigure.in file and produces aconfigure shell script that
users use to configure Wine to their system.

Thereareexceptions to the "avoid #ifdef MyOS" rule. Wine, for example, needs the
internals of the signal stack -- that cannot easily be described in terms of features.

Let’s now turn to specific porting problems and how to solve them.

15.1.3. MyOS doesn’t have the foo.h header!
This first step is to makeautoconfcheck for this header. Inconfigure.in you add a
segment like this in the section that checks for header files (search for "header files"):

AC_CHECK_HEADER(foo.h, AC_DEFINE(HAVE_FOO_H))

If your operating system supports a header file with the same contents but a different
name, saybar.h , add a check for that also.

Now you can change

157

Chapter 15. Porting Wine to new Platforms

#include <foo.h>

to

#ifdef HAVE_FOO_H
#include <foo.h>
#elif defined (HAVE_BAR_H)
#include <bar.h>
#endif

If your system doesn’t have a corresponding header file even though it has the library
functions being used, you might have to add an #else section to the conditional. Avoid
this if you can.

You will also need to add #undef HAVE_FOO_H (etc.) toinclude/config.h.in

Finish up withmake configureand./configure.

15.1.4. MyOS doesn’t have the bar function!
A typical example of this is thememmovefunction. To solve this problem you would
addmemmoveto the list of functions thatautoconfchecks for. Inconfigure.in you
search forAC_CHECK_FUNCSand addmemmove. (You will notice that someone already
did this for this particular function.)

Secondly, you will also need to add #undef HAVE_BAR toinclude/config.h.in

The next step depends on the nature of the missing function.

Case 1:

It’s easy to write a complete implementation of the function. (memmovebelongs
to this case.)

You add your implementation inmisc/port.c surrounded by #ifndef
HAVE_MEMMOVE and #endif.

158

Chapter 15. Porting Wine to new Platforms

You might have to add a prototype for your function. If so,include/miscemu.h

might be the place. Don’t forget to protect that definition by #ifndef
HAVE_MEMMOVE and #endif also!

Case 2:

A general implementation is hard, but Wine is only using a special case.

An example is the variouswait calls used inSIGNAL_child from
loader/signal.c . Here we have a multi-branch case on features:

#ifdef HAVE_THIS
...
#elif defined (HAVE_THAT)
...
#elif defined (HAVE_SOMETHING_ELSE)
...
#endif

Note that this is very different from testing on operating systems. If a new version
of your operating systems comes out and adds a new function, this code will
magically start using it.

Finish up withmake configureand./configure.

15.2. Running & Compiling WINE in OS/2
Written by Robert Pouliot <krynos@clic.net >, January 9, 1997

(Extracted fromwine/documentation/wine_os2)

159

Chapter 15. Porting Wine to new Platforms

If you want to help the port of WINE to OS/2, send me a message at
<krynos@clic.net > I currently don’t want beta testers. It must work before we can
test it.

Here is what you need to (try to) compile Wine for OS/2:

• EMX 0.9c (fix 2)

• XFree86 3.2 OS/2 (with development libraries)

• bash, gnumake, grep, tar , bison, flex

• sed(a working copy of)

• xpm

• diff andpatch are recommended

• Lots of disk space (about 40-50 megs after EMX and XFree installed)

To compile:

$ sh
$ tools/make_os2.sh
$ make depend
$ make
$ emxbind wine

Currently:

• configureandmake dependwork...

• makecompiles (with a modified Linuxmman.h), but doesn’t link.

• signal handling is horrible... (if any)

• EMX doesn’t supportmmap(and related), SysV IPC andstafs()

• XFree86/OS2 3.2 doesn’t supportXShmQueryExtension() and
XShmPixmapFormat() due to the same lack in EMX...

160

Chapter 15. Porting Wine to new Platforms

What needs to be redone:

• LDT (usingDosAllocSeg in memory/ldt.c) *

• Implementmmap() and SysV IPC in EMX *

• File functions,

• I/O access (do it!),

• Communication (modem),

• Interrupt (if int unknown, call current RealMode one...),

• Verify that everything is thread safe (how does Win95/NT handle multi-thread?),

• Move X functions in some files (and make a wrapper, to use PM instead latter),

• Return right CPU type,

• Make winsock work

The good things:

• OS/2 have DOS interrupts

• OS/2 have I/O port access

• OS/2 have multi-thread

• Merlin have Open32 (to be used later...)

161

Chapter 16. Consoles in Wine

16.1. Consoles
Written by John Richardson <jrichard@zko.dec.com > Maintained by Joseph
Pranevich <jpranevich@lycos.com >

(Extracted fromwine/documentation/console)

16.1.1. Console - First Pass
Consoles are just xterms created with the-Sxxn switch. A pty is opened and the
master goes to thexterm side and the slave is held by the wine side. The console itself
is turned into a few HANDLE32s and is set to theSTD_*_HANDLES.

It is possible to use theWriteFile andReadFile commands to write to a win32
console. To accomplish this, all K32OBJs that support I/O have a read and write
function pointer. So,WriteFile callsK32OBJ_WriteFile which calls the K32OBJ’s
write function pointer, which then finally callswrite .

[this paragraph is now out of date]If the command line console is to be inherited or a
process inherits its parent’s console (-- can that happen???), the console is created at
process init time viaPROCESS_InheritConsole . The0, 1, and2 file descriptors are
duped to be theSTD_*_HANDLESin this case. Also in this case a flag is set to indicate
that the console comes from the parent process or command line.

If a process doesn’t have a console at all, itspdb->console is set toNULL. This helps
indicate when it is possible to create a new console (viaAllocConsole).

WhenFreeConsole is called, all handles that the process has open to the console are
closed. Like most K32OBJs, if the console’s refcount reaches zero, its K32OBJ destroy
function is called. The destroy kills the xterm if one was open.

Also like most k32 objects, we assume that (K32OBJ) header is the first field so the
casting (from K32OBJ*to CONSOLE*) works correctly.

162

Chapter 16. Consoles in Wine

FreeConsole is called on process exit (inExitProcess) if pdb->console is not
NULL.

16.1.2. BUGS
Console processes do not inherit their parent’s handles. I think there needs to be two
cases, one where they have to inherit thestdin / stdout / stderr from unix, and one
where they have to inherit from another windows app.

SetConsoleMode -- UNIX only hasICANONand variousECHOs to play around with
for processing input. Win32 has line-at-a-time processing, character processing, and
echo. I’m putting together an intermediate driver that will handle this (and hopefully
won’t be any more buggy than the NT4 console implementation).

16.1.3. Experimentation
experimentation with NT4 yields that:

WriteFile

• does not truncate file on 0 length write

• 0 length write or error on write changesnumcharswritten to 0

• 0 length write returnsTRUE

• works with console handles

_lwrite

• does truncate/expand file at current position on 0 length write

163

Chapter 16. Consoles in Wine

• returns 0 on a zero length write

• works with console handles (typecasted)

WriteConsole

• expects only console handles

SetFilePointer

• returns -1 (err 6) when used with a console handle

FreeConsole

• even when all the handles to it are freed, the win32 console stays visible, the
only way I could find to free it was via theFreeConsole

Is it possible to interrupt win32’sFileWrite ? I’m not sure. It may not be possible to
interrupt any system calls.

16.1.4. DOS (Generic) Console Support

16.1.4.1. I. Command Line Configuration

DOS consoles must be configured either on the command line or in a dot resource file
(.console). A typical configuration consists of a string of driver keywords separated

164

Chapter 16. Consoles in Wine

by plus (’+’) signs. To change the configuration on the command-line, use the
-console switch.

For example:

wine -console ncurses+xterm <application>

Possible drivers:

tty:

Generic text-only support. Supports redirection.

ncurses:

Full-screen graphical support with color.

xterm:

Load a new window to display the console in. Also supports resizing windows.

16.1.4.2. II. wine.conf Configuration

In thewine.conf file, you can create a section called [console] that contains
configuration options that are respected by the assorted console drivers.

Current Options:

XtermProg=<program>

Use this program instead ofxterm. This eliminates the need for a recompile. See
the table below for a comparison of various terminals.

InitialRows=<number>

Attempt to start all drivers with this number of rows. This causes xterms to be
resized, for instance.

165

Chapter 16. Consoles in Wine

Note: This information is passed on the command-line with the -g switch.

InitialColumns=<number>

Attempt to start all drivers with this number of columns. This causes xterms to be
resized, for instance.

Note: This information is passed on the command-line with the -g switch.

TerminalType=<name>

Tell any driver that is interested (ncurses) which termcap and/or terminfo type to
use. The default is xterm which is appropriate for most uses.nxterm may give
you better support if you use that terminal. This can also be changed to "linux" (or
"console" on older systems) if you manage to hack the ability to write to the
console into this driver.

16.1.4.3. III. Terminal Types

There are a large number of potential terminals that can be used with Wine, depending
on what you are trying to do. Unfortunately, I am still looking for the "best" driver
combination.

Note: ’slave’ is required for use in Wine, currently.

Program Color? Resizing? Slave?

166

Chapter 16. Consoles in Wine

Program Color? Resizing? Slave?
xterm N Y Y

nxterm Y N Y

rxvt Y ? N

(linux console) Y N ?

As X terminals typically use a 24x80 screen resolution rather than the typical 25x80
one, it is necessary to resize the screen to allow a DOS program to work full-screen.
There is awine.conf option to work around this in some cases but run-time resizing
will be disabled.

167

Chapter 17. How to do regression
testing using Cvs

written by (???)

(Extracted fromwine/documentation/bugreports)

A problem that can happen sometimes is ’it used to work before, now it doesn’t
anymore...’. Here is a step by step procedure to try to pinpoint when the problem
occured. This isNOT for casual users.

1. Get the ’full cvs’ archive from winehq. This archive is the cvs tree but with the
tags controlling the versioning system. It’s a big file (> 15 meg) with a name like
full-cvs-<last update date> (it’s more than 100mb when uncompressed, you can’t
very well do this with small, old computers or slow Internet connections).

2. untar it into a repository directory:

cd /home/gerard
tar -zxffull-cvs-2000-05-20.tar.gz
mv wine repository

3. extract a new destination directory. This directory must not be in a subdirectory of
the repository elsecvswill think it’s part of the repository and deny you an
extraction in the repository:

cd /home/gerard
mv wine wine_current (-> this protects your current wine sand-

box, if any)
export CVSROOT=/home/gerard/repository
cd /home/gerard
cvs -d $CVSROOT checkout wine

168

Chapter 17. How to do regression testing using Cvs

Note that it’s not possible to do a checkout at a given date; you always do the
checkout for the last date where the full-cvs-xxx snapshot was generated.

4. you will have now in the~/wine directory an image of the cvs tree, on the client
side. Now update this image to the date you want:

cd /home/gerard/wine
cvs -d $CVSROOT update -D "1999-06-01"

The date format isYYYY-MM-DD.

Many messages will inform you that more recent files have been deleted to set
back the client cvs tree to the date you asked, for example:

cvs update: tsx11/ts_xf86dga2.c is no longer in the repos-
itory

cvs updateis not limited to upgrade to anewerversion as I have believed for far
too long :-(

5. Now proceed as for a normal update:

./configure
make depend && make

When you have found the exact date when a bug was added to the cvs tree, use
something like :

cvs -d $CVSROOT diff -D "1999-07-10" -D "1999-07-12"

to get all the differences between the last cvs tree version known to work and code
that first displayed the misbehavior.

169

Chapter 17. How to do regression testing using Cvs

Note: I did not include flags for diff since they are in my .cvsrc file:

cvs -z 3
update -dPA
diff -u

From this diff file, particularly the file names, and theChangeLog , it’s usually
possible to find the different individual patches that were done at this time.

If any non-programmer reads this, the fastest method to get at the point where the
problem occured is to use a binary search, that is, if the problem occured in 1999,
start at mid-year, then is the problem is already here, back to 1st April, if not, to 1st
October, and so on.

6. The next step is to start from the last working version and to dig the individual
contributions from
http://www.integrita.com/cgi-local/lwgate.pl/WINE-PATCHES/
(http://www.integrita.com/cgi-local/lwgate.pl/WINE-PATCHES/) (where the Wine
patches mailing list is archived)

If the patch was done by the Wine maintainer or if it was sent directly to his mail
address without going first through wine-patches
(mailto:wine-patches@winehq.com), you are out of luck as you will never find the
patch in the archive. If it is, it’s often possible to apply the patches one by one to
last working cvs snapshot, compile and test. If you have saved the next candidate
as/home/gerard/buggedpatch1.txt :

cd /home/gerard/wine
patch -p 0 < /home/gerard/buggedpatch1.txt

Beware that the committed patch is not always identical to the patch that the author
sent to wine-patches, as sometimes the Wine maintainer changes things a bit.

170

Chapter 17. How to do regression testing using Cvs

If you find one patch that is getting the cvs source tree to reproduce the problem,
you have almost won; post the problem on comp.emulators.windows.wine and
there is a chance that the author will jump in to suggest a fix; or there is always the
possibility to look hard at the patch until it is coerced to reveal where is the bug :-)

171

Winelib User’s Guide

Winelib User’s Guide

Table of Contents
1. Winelib Introduction ...1

1.1. What is Winelib?...1
1.2. System requirements...1
1.3. Getting Started..2

1.3.1. Winemaker introduction..2
1.3.2. Step by step guide..3

2. Portability issues..1

2.1. Anonymous unions/structs..1
2.2. Unicode...2
2.3. C library..3
2.4. Compiling Problems...4
2.5. Initialization problems..5
2.6. VC’s native COM support...6
2.7. SEH...6
2.8. Others..6

3. The Winelib development toolkit..8

3.1. Winemaker..8
3.1.1. Support for Visual C++ projects..8
3.1.2. Winemaker’s source analysis...8
3.1.3. The interactive mode..11
3.1.4. The Makefile.in files..11
3.1.5. The Make.rules.in file..15
3.1.6. The configure.in file...15

3.2. Compiling resource files: WRC..15
3.3. Compiling message files: WMC...17
3.4. The Spec file...17

3.4.1. Introduction..18
3.4.2. Compiling it...20
3.4.3. More details...20

3.5. Linking it all together..25

174

4. Dealing with the MFC ...27

4.1. Introduction...27
4.2. Legal issues...27
4.3. Compiling the MFC..29
4.4. Using the MFC..29

5. Dealing with binary only dlls ..30

5.1. Introduction...30
5.2. Writing the spec file..30
5.3. How to deal with C++ APIs..30
5.4. Writing the wrapper..30

6. Packaging your Winelib application..31

175

Chapter 1. Winelib Introduction

1.1. What is Winelib?
Winelib is a development toolkit which allows you to compile your Windows
applications on Unix.

Most of Winelib’s code consists of the Win32 API implementation. Fortunately this
part is 100 percent shared with Wine. The remainder consists of Windows compatible
headers and tools like the resource compiler (and even these are used when compiling
Wine).

Thanks to the above, Winelib supports most C and C++ 32bit source code, resource and
message files, and can generate graphical or console applications as well as dynamic
libraries.

What is not supported is 16bit source code as the types it depends on (especially
segmented pointers) are not supported by Unix compilers. Also missing are some of the
more exotic features of Microsoft’s compiler like native COM support and structured
exception handling. So you may need to perform some modifications in your code when
recompiling your application with Winelib. This guide is here to help you in this task.

What you gain by recompiling your application with Winelib is the ability to make
calls to Unix APIs, directly from your Windows source code. This allows for a better
integration with the Unix environment than is allowed by runnning an unmodified
Windows application running in Wine. Another benefit is that a Winelib application can
relatively easily be recompiled on a non-Intel architecture and run there without the
need for a slow software emulation of the processor.

1.2. System requirements
The requirements for Winelib are similar to those for Wine.

1

Chapter 1. Winelib Introduction

Basically if you can run Wine on your computer then you can run Winelib. But the
converse is not true. You can also build Winelib and Winelib applications on platforms
not supported by Wine, typically platforms with a non i386 processor. But this is still
pretty much an uncharted territory. It would be more reasonable to first target one of the
more mundane i386-based platforms first.

The main difference is that the compiler becomes much more important. It is highly
recommended that you use gcc, g++, and the GNU binutils. The more recent your gcc
compiler the better. For any serious amount of code you should not consider anything
older than gcc 2.95.2. The latest gcc snapshots contain some useful bug fixes and much
better support for anonymous structs and unions. This can help reduce the number of
changes you have to do in your code but these are not stable releases of the compiler so
you may not want to use them in production.

1.3. Getting Started

1.3.1. Winemaker introduction
So what is needed to compile a Windows application with Winelib? Well, it really
depends on the complexity of your application but here are some issues that are shared
by all applications:

• the case of your files may be bad. For example they could be in all caps:HELLO.C.
It’s not very nice to work with and probably not what you intended.

• then the case of the filenames in your include statements may be wrong: maybe they
include ’Windows.h’ instead of ’windows.h’.

• your include statements may use ’\’ instead of ’/’. ’\’ is not recognized by Unix
compilers while ’/’ is recognized in both environments.

• you will need to perform the usual Dos to Unix text file conversion otherwise you’ll
get in trouble when the compiler considers that your ’\’ is not at the end of the line
since it is followed by a pesky carriage return.

2

Chapter 1. Winelib Introduction

• you will have to write new makefiles.

The best way to take care of all these issues is to use winemaker.

Winemaker is a perl script which is designed to help you bootstrap the conversion of
your Windows projects to Winelib. In order to do this it will go analyze your code,
fixing the issues listed above and generate autoconf-based Makefiles.

Let’s suppose that Wine/Winelib has been installed in the/usr/local/wine

directory, and that you are already in the top directory of your sources. Then converting
your project to Winelib may be as simple as just running the three commands below:

$ winemaker --lower-uppercase
$./configure --with-wine=/usr/local/wine
$ make

But of course things are not always that simple which is why we have this guide at all.

1.3.2. Step by step guide
Let’s retrace the steps above in more details.

Getting the source

First if you can try to get the sources together with the executables/libraries that
they build. In the current state of winemaker having these around can help it guess
what it is that your project is trying to build. Later, when it is able to understand
Visual C++ projects, and if you use them, this will no longer be necessary. Usually
the executables and libraries are in aRelease or Debug subdirectory of the
directory where the sources are. So it’s best if you can transfer the source files and
either of these directories to Linux. Note that you don’t need to transfer the.obj ,
.pch , .sbr and other files that also reside in these directories; especially as they
tend to be quite big.

3

Chapter 1. Winelib Introduction

cd <root_dir>

Then go to the root directory where are your source files. Winemaker can deal
with a whole directory hierarchy at once so you don’t need to go into a leaf
directory, quite the contrary. Winemaker will automatically generate makefiles in
each directory where one is required, and will generate a global makefile so that
you can rebuild all your executables and libraries with a singlemakecommand.

Making the source writable

Then make sure you have write access to your sources. It may sound obvious, but
if you copied your source files from a CD-ROM or if they are in Source Safe on
Windows, chances are that they will be read-only. But Winemaker needs write
access so that it can fix them. You can arrange that by runningchmod -R u+w ..
Also you will want to make sure that you have a backup copy of your sources in
case something went horribly wrong, or more likely, just for reference at a later
point. If you use a version control system you’re already covered.

Running winemaker

Then you’ll run winemaker. Here are the options you will most likely want to use.

--lower-uppercase

--lower-all

These options specify how to deal with files, and directories, that have an
’incorrect’ case.--lower-uppercase specifies they should only be
renamed if their name is all uppercase. So files that have a mixed case, like
’Hello.c’ would not be renamed.--lower-all will rename any file. If
neither is specified then no file or directory will be renamed, almost. As you
will seelaterwinemaker may still have to rename some files.

--nobackup

Winemaker normally makes a backup of all the files in which it does more
than the standard Dos to Unix conversion. But if you already have (handy)

4

Chapter 1. Winelib Introduction

copies of these files elsewhere you may not need these so you should use this
option.

--dll

--console

These option lets winemaker know what kind of target you are building. If
you have the windows library in your source hierarchy then you should not
need to specify--dll . But if you have console executables then you will
need to use the corresponding option.

--mfc

This option tells winemaker that you are building an MFC
application/library.

-Dmacro[=defn]

-Idir

-Ldir

-idll

-llibrary

The-i specifies a Winelib library to import via thespec filemechanism.
Contrast this with the-l which specifies a Unix library to link with. The
other options work the same way they would with a C compiler. All are
applied to all the targets found. When specifying a directory with either-I or
-L , winemaker will prefix a relative path with$(TOPDIRECTORY)/ so that it
is valid from any of the source directories. You can also use a variable in the
path yourself if you wish (but don’t forget to escape the ’$’). For instance you
could specify-I\$(WINELIB_INCLUDE_ROOT)/msvcrt .

So your command may finally look like:winemaker --lower-uppercase

-Imylib/include

5

Chapter 1. Winelib Introduction

File renaming

When you execute winemaker it will first rename files to bring their character
case in line with your expectations and so that they can be processed by the
makefiles. This later category implies that files with a non lowercase extension
will be renamed so that the extension is in lowercase. So, for instance,HELLO.C

will be renamed toHELLO.c . Also if a file or directory name contains a space or a
dollar, then this character will be replaced with an underscore. This is because
these characters cause problems with current versions of autoconf (2.13) and make
(3.79).

Source modifications and makefile generation

winemaker will then proceed to modify the source files so that they will compile
more readily with Winelib. As it does so it may print warnings when it has to
make a guess or identifies a construct that it cannot correct. Finally it will generate
the autoconf-based makefiles. Once all this is done you can review the changes
that winemaker did to your files by usingdiff -uw . For instance:diff -uw
hello.c.bak hello.c

Running the configure script

Before you runmakeyou must run the autoconfconfigurescript. The goal of this
step is to analyze your system and generate customized makefiles from the
Makefile.in files. This is also when you have to tell where Winelib resides on
your system. If wine is installed in a single directory or you have the Wine sources
compiled somewhere then you can just run./configure
--with-wine=/usr/local/bin or ./configure --with-wine=~/winerespectively.

Running make

This is a pretty simple step: just typemakeand voila, you should have all your
executables and libraries. If this did not work out, then it means that you will have
to read this guide further to:

• review theMakefile.in files to adjust the default compilation and link
options set by winemaker. See theWinemaker’s source analysissection for

6

Chapter 1. Winelib Introduction

some hints.

• fix the portability issues in your sources. SeePortability issuesfor more details.

7

Chapter 2. Portability issues

2.1. Anonymous unions/structs
Anonymous structs and unions support depends heavily on the compiler. The best
support is provided by gcc/g++ 2.96 and later. But these versions of gcc come from the
development branch so you may want to hold off before using them in production. g++
2.95 supports anonymous unions but not anonymous structs and gcc 2.95 supports
neither. Older versions of gcc/g++ have no support for either. since it is anonymous
unions that are the most frequent in the windows headers, you should at least try to use
gcc/g++ 2.95.

But you are stuck with a compiler that does not support anonymous structs/unions all is
not lost. The Wine headers should detect this automatically and define
NONAMELESSUNION/ NONAMELESSSTRUCT. Then any anonymous union will be given
a nameu or u2, u3, etc. to avoid name clashes. You will then have to modify your code
to include those names where appropriate.

The name that Wine adds to anonymous unions should match that used by the
Windows headers. So all you have to do to compile your modified code in Windows is
to explicitly define theNONAMELESSUNIONmacro. Note that it would be wise to also
explicitly define this macro on in your Unix makefile (Makefile.in) to make sure
your code will compile even if the compiler does support anonymous unions.

Things are not as nice when dealing with anonymous structs. Unfortunately the
Windows headers make no provisions for compilers that do not support anonymous
structs. So you will need to be more subtle when modifying your code if you still want
it to compile in Windows. Here’s a way to do it:

#ifdef WINELIB
#define ANONS .s
#else
#define ANONS
#endif

1

Chapter 2. Portability issues

. . .

{
SYSTEM_INFO si;
GetSystemInfo(&si);
printf("Processor architecture=%d\n",si ANONS .wProcessorArchitecture);
}

You may put the#define directive directly in the source if only few files are
impacted. Otherwise it’s probably best to put it in one of your project’s widely used
headers. Fortunately usage of an anonymous struct is much rarer than usage of an
anonymous union so these modifications should not be too much work.

2.2. Unicode
Because gcc and glibc use 4 byte unicode characters, the compiler intrinsicL"foo"

generates unicode strings which cannot be used by Winelib (Win32 code expects 16 bit
unicode characters). There are 3 workarounds for this:

1. Use the latest gcc version (2.9.7 or later), and pass the-fshort-wchar option
to every file that is built.

2. Use the__TEXT("foo") macro, defineWINE_UNICODE_REWRITEfor each file
that is built, and add-fwritable-strings to the compiler command line.
You should replace all occurances of wchar_t with WCHAR also, since wchar_t is
the native (32 bit) type. These changes allow Wine to modify the native unicode
strings created by the compiler in place, so that they are 16 bit by the time any
functions get to use them. This scheme works with older versions of gcc (2.95.x+).

3. Use the compiler default, but don’t call any Win32 unicode function without
converting the strings first!

2

Chapter 2. Portability issues

If you are using Unicode and you want to be able to use standard library calls (e.g.
wcslen , wsprintf) as well as Win32 unicode calls (API functions ending in W, or
having_UNICODEdefined), then you should use the msvcrt runtime library instead of
glibc. The functions in glibc will not work correctly with 16 bit strings.

If you need a Unicode string even when _UNICODEisn’t defined, use
WINE_UNICODE_TEXT("foo") . This will need to be wrapped in#ifdef WINELIB to
prevent breaking your source for windows compiles.

To prevent warnings when declaring a single unicode character in C, use
(WCHAR)L’x’ , rather than__TEXT(’x’) . This works on Windows also.

2.3. C library
There are 3 choices available to you regarding which C library to use:

1. Use the glibc native C library.

2. Use the msvcrt C library.

3. Use a custom mixture of both.

Note that under Wine, the crtdll library is implemented using msvcrt, so there is no
benefit in trying to use it.

Using glibc in general has the lowest overhead, but this is really only important for file
I/O. Many of the functions in msvcrt are simply resolved to glibc, so in reality options
2 and 3 are fairly similar choices.

To use glibc, you don’t need to make changes to your application; it should work
straight away. There are a few situations in which using glibc is not possible:

1. Your application uses Win32 and C library unicode functions.

2. Your application uses MS specific calls likebeginthread() , loadlibrary() ,
etc.

3

Chapter 2. Portability issues

3. You rely on the precise semantics of the calls, for example, returning-1 rather
than non-zero. More likely, your application will rely on calls likefopen() taking
a Windows path rather than a Unix one.

In these cases you should use msvcrt to provide your C runtime calls. To do this, add a
line:

import msvcrt.dll

to your applications.spec file. This will causewinebuild to resolve your c library
calls tomsvcrt.dll . Many simple calls which behave the same have been specified as
non-importable from msvcrt; in these caseswinebuild will not resolve them and the
standard linkerld will link to the glibc version instead.

In order to avoid warnings in C (and potential errors in C++) from not having
prototypes, you may need to use a set of MS compatable header files. These are
scheduled for inclusion into Wine but at the time of writing are not available. Until they
are, you can try prototyping the functions you need, or just live with the warnings.

If you have a set of include files (or when they are available in Wine), you need to use
the-isystem "include_path" flag to gcc to tell it to use your headers in
preference to the local system headers.

To use option 3, add the names of any symbols that you don’t want to use from msvcrt
into your applications.spec file. For example, if you wanted the MS specific
functions, but not file I/O, you could have a list like:

@ignore = (fopen fclose fwrite fread fputs fgets)

Obviously, the complete list would be much longer. Remember too that some functions
are implemented with an underscore in their name and#define d to that name in the
MS headers. So you may need to find out the name by examing
dlls/msvcrt/msvcrt.spec to get the correct name for your@ignore entry.

4

Chapter 2. Portability issues

2.4. Compiling Problems
If you get undefined references to Win32 API calls when building your application: if
you have a VC++.dsp file, check it for all the.lib files it imports, and add them to
your applications.spec file. winebuild gives you a warning for unused imports so you
can delete the ones you don’t need later. Failing that, just import all the DLL’s you can
find in thedlls/ directory of the Wine source tree.

If you are missing GUIDs at the link stage, add-lwine_uuid to the link line.

gcc is more strict than VC++, especially whan compiling C++. This may require you to
add casts to your C++ to prevent overloading abiguities between similar types (such as
two overloads that take int and char respectively).

If you come across a difference between the Windows headers and Wine’s that breaks
compilation, try asking for help on <wine-devel@winehq.com >.

2.5. Initialization problems
Initialization problems occur when the application calls the Win32 API before Winelib
has been initialized. How can this happen?

Winelib is initialized by the application’smain before it calls the regularWinMain .
But, in C++, the constructors of static class variables are called before themain (by the
module’s initializer). So if such a constructor makes calls to the Win32 API, Winelib
will not be initialized at the time of the call and you may get a crash. This problem is
much more frequent in C++ because of these class constructors but could also, at least
in theory, happen in C if you were to specify an initializer making calls to Winelib. But
of course, now that you are aware of this problem you won’t do it :-).

Further compounding the problem is the fact that Linux’s (GNU’s?) current dynamic
library loader does not call the module initializers in their dependency order. So even if
Winelib were to have its own initializer there would be no garantee that it would be
called before the initializer of the library containing this static variable. Finally even if

5

Chapter 2. Portability issues

the variable is in a library that your application links with, that library’s initializer may
be called before Winelib has been initialized. One such library is the MFC.

The current workaround is to move all the application’s code in a library and to use a
small Winelib application to dynamically load this library. Tus the initialization
sequence becomes:

• the wrapper application starts.

• its empty initializer is run.

• its main is run. Its first task is to initialize Winelib.

• it then loads the application’s main library, plus all its dependent libraries.

• which triggers the execution of all these libraries initializers in some unknown order.
But all is fine because Winelib has already been initialized anyway.

• finally the main function calls theWinMain of the application’s library.

This may sound complex by Winemaker makes it simple. Just specify--wrap or
--mfc on the command line and it will adapt its makefiles to build the wrapper and the
application library.

2.6. VC’s native COM support
don’t use it, guide on how to replace it with normal C++ code (yes, how???): extracting
a .h and .lib from a COM dll Can ’-fno-rtti’ be of some use or even required?

2.7. SEH
how to modify the syntax so that it works both with gcc’s macros and Wine’s macros, is
it even possible?

6

Chapter 2. Portability issues

2.8. Others
-fpermissive and -fno-for-scope, maybe other options

7

Chapter 3. The Winelib development
toolkit

3.1. Winemaker

3.1.1. Support for Visual C++ projects
Unfortunately Winemaker does not support the Visual C++ project files, ...yet.
Supporting Visual C++ project files (the.dsp and some.mak files for older versions
of Visual C++) is definitely on the list of important Winemaker improvements as it will
allow it to properly detect the defines to be used, any custom include path, the list of
libraries to link with, and exactly which source files to use to build a specific target. All
things that the current version of Winemaker has to guess or that you have to tell it as
will become clear in the next section.

When the time comes Winemaker, and its associated build system, will need some
extensions to support:

• per file defines and include paths. Visual C++ projects allow the user to specify
compiler options for each individual file being compiled. But this is probably not
very frequent so it might not be that important.

• multiple configurations. Visual C++ projects usually have at least a ’Debug’ and a
’Release’ configuration which are compiled with different compiler options. How
exactly we deal with these configurations remains to be determined.

3.1.2. Winemaker’s source analysis
Winemaker can do its work even without a Windows makefile or a Visual Studio project
to start from (it would not know what to do with a windows makefile anyway). This

8

Chapter 3. The Winelib development toolkit

involves doing many educated guesses which may be wrong. But by and large it works.
The purpose of this section is to describe in more details how winemaker proceeds so
that you can better understand why it gets things wrong and how to fix it/avoid it.

At the core winemaker does a recursive traversal of your source tree looking for targets
(things to build) and source files. Let’s start with the targets.

First are executables and dlls. Each time it finds one of these in a directory, winemaker
puts it in the list of things to build and will later generate aMakefile.in file in this
directory. Note that Winemaker also knows about the commonly usedRelease and
Debug directories, so it will attribute the executables and libraries found in these to
their parent directory. When it finds an executable or a dll winemaker is happy because
these give it more information than the other cases described below.

If it does not find any executable or dll winemaker will look for files with a.mak

extension. If they are not disguised Visual C++ projects (and currently even if they are),
winemaker will assume that a target by that name should be built in this directory. But
it will not know whether this target is an executable or a library. So it will assume it is
of the default type, i.e. a graphical application, which you can override by using the
--cuiexe and--dll options.

Finally winemaker will check to see if there is a file calledmakefile . If there is, then
it will assume that there is exactly one target to build for this directory. But it will not
know the name or type of this target. For the type it will do as in the above case. And
for the name it will use the directory’s name. Actually, if the directory starts withsrc

winemaker will try to make use of the name of the parent directory instead.

Once the target list for a directory has been established, winemaker will check whether
it contains a mix of executables and libraries. If it is so, then winemaker will make it so
that each executable is linked with all the libraries of that directory.

If the previous two steps don’t produce the expected results (or you think they will not)
then you should put winemaker in interactive mode (seeThe interactive mode). This
will allow you to specify the target list (and more) for each directory.

In each directory winemaker also looks for source files: C, C++ or resource files. If it
also found targets to build in this directory it will then try to assign each source file to
one of these targets based on their names. Source files that do not seem to match any

9

Chapter 3. The Winelib development toolkit

specific target are put in a global list for this directory, see theEXTRA_xxx variables in
theMakefile.in , and linked with each of the targets. The assumption here is that
these source files contain common code which is shared by all the targets. If no targets
were found in the directory where these files are located, then they are assigned to the
parent’s directory. So if a target is found in the parent directory it will also ’inherit’ the
source files found in its subdirectories.

Finally winemaker also looks for more exotic files like.h headers,.inl files
containing inline functions and a few others. These are not put in the regular source file
lists since they are not compiled directly. But winemaker will still remember them so
that they are processed when the time comes to fix the source files.

Fixing the source files is done as soon as winemaker has finished its recursive directory
traversal. The two main tasks in this step are fixing the CRLF issues and verifying the
case of the include statements.

Winemaker makes a backup of each source file (in such a way that symbolic links are
preserved), then reads it fixing the CRLF issues and the other issues as it goes. Once it
has finished working on a file it checks whether it has done any non CRLF-related
modification and deletes the backup file if it did not (or if you used--nobackup).

Checking the case of the include statements (of any form, including files referenced by
resource files), is done in the context of that source file’s project. This way winemaker
can use the proper include path when looking for the file that is included. If winemaker
fails to find a file in any of the directories of the include path, it will rename it to
lowercase on the basis that it is most likely a system header and that all system headers
names are lowercase (this can be overriden by using--nolower-include).

Finally winemaker generates theMakefile.in files and other support files (wrapper
files, spec files,configure.in , Make.rules.in). From the above description you
can guess at the items that winemaker may get wrong in this phase: macro definitions,
include path, library path, list of libraries to import. You can deal with these issues by
using winemaker’s-D , -I , -L and-i options if they are homogeneous enough between
all your targets. Otherwise you may want to use winemaker’sinteractive modeso that
you can specify different settings for each project / target.

For instance, one of the problems you are likely to encounter is that of theSTRICT

10

Chapter 3. The Winelib development toolkit

macro. Some programs will not compile ifSTRICT is not turned on, and others will not
compile if it is. Fortunately all the files in a given source tree use the same setting so
that all you have to do is add-DSTRICT on winemaker’s command line or in the
Makefile.in file(s).

Finally the most likely reasons for missing or duplicate symbols are:

• The target is not being linked with the right set of libraries. You can avoid this by
using winemaker’s-L and-i options or adding these libraries to theMakefile.in

file.

• Maybe you have multiple targets in a single directory and winemaker guessed
wrong when trying to match the source files with the targets. The only way to fix this
kind of problem is to edit theMakefile.in file manually.

• Winemaker assumes you have organized your source files hierarchically. If a target
uses source files that are in a sibling directory, e.g. if you link with
../hello/world.o then you will get missing symbols. Again the only solution is
to manually edit theMakefile.in file.

3.1.3. The interactive mode
what is it, when to use it, how to use it

3.1.4. The Makefile.in files
TheMakefile.in is your makefile. More precisely it is the template from which the
actual makefile will be generated by theconfigure script. It also relies on the
Make.rules file for most of the actual logic. This way it only contains a relatively
simple description of what needs to be built, not the complex logic of how things are
actually built.

So this is the file to modify if you want to customize things. Here’s a detailed
description of its content:

11

Chapter 3. The Winelib development toolkit

Generic autoconf variables

TOPSRCDIR = @top_srcdir@
TOPOBJDIR = .
SRCDIR = @srcdir@
VPATH = @srcdir@

The above is part of the standard autoconf boiler-plate. These variables make it possible
to have per-architecture directories for compiled files and other similar goodies (But
note that this kind of functionality has not been tested with winemaker generated
Makefile.in files yet).

SUBDIRS =
DLLS =
EXES = hello

This is where the targets for this directory are listed. The names are pretty
self-explanatory.SUBDIRSis usually only present in the top-level makefile. For
libraries you should put the full Unix name, e.g.libfoo.so .

Global settings

DEFINES = -DSTRICT
INCLUDE_PATH =
LIBRARY_PATH =
LIBRARIES =

This section contains the global compilation settings: they apply to all the targets in this
makefile. TheLIBRARIES variable allows you to specify additional Unix libraries to
link with. Note that you would normally not specify Winelib libraries there. To link
with a Winelib library, one uses the ’import’ statement of thespec files. The exception
is when you have not explicitly exported the functions of a Winelib library. One library
you are likely to find here ismfc (note, the ’-l’ is omitted).

12

Chapter 3. The Winelib development toolkit

The other variable names should be self-explanatory. You can also use three additional
variables that are usually not present in the file:CEXTRA, CXXEXTRAandWRCEXTRA

which allow you to specify additional flags for, respectively, the C compiler, the C++
compiler and the resource compiler. Finally note that all these variable contain the
option’s name exceptIMPORTS. So you should put-DSTRICT in DEFINESbut winmm

in IMPORTS.

Then come one section per target, each describing the various components that target is
made of.

hello sources and settings

hello_C_SRCS = hello.c
hello_CXX_SRCS =
hello_RC_SRCS =
hello_SPEC_SRCS = hello.spec

Each section will start with a comment indicating the name of the target. Then come a
series of variables prefixed with the name of that target. Note that the name of the
prefix may be slightly different from that of the target because of restrictions on the
variable names.

The above variables list the sources that are used togenerate the target. Note that there
should only be one resource file inRC_SRCS, and thatSPEC_SRCSwill always contain
a single spec file.

hello_LIBRARY_PATH =
hello_LIBRARIES =
hello_DEPENDS =

The above variables specify how to link the target. Note that they add to the global
settings we saw at the beginning of this file.

DEPENDS, when present, specifies a list of other targets that this target depends on.
Winemaker will automatically fill this field, and theLIBRARIES field, when an
executable and a library are built in the same directory.

13

Chapter 3. The Winelib development toolkit

The reason why winemaker also links with libraries in the Unix sense in the case above
is because functions will not be properly exported. Once you have exported all the
functions in the library’s spec file you should remove them from theLIBRARIES field.

hello_OBJS = $(hello_C_SRCS:.c=.o) \
$(hello_CXX_SRCS:.cpp=.o) \
$(EXTRA_OBJS)

The above just builds a list of all the object files that correspond to this target. This list
is later used for the link command.

Global source lists

C_SRCS = $(hello_C_SRCS)
CXX_SRCS = $(hello_CXX_SRCS)
RC_SRCS = $(hello_RC_SRCS)
SPEC_SRCS = $(hello_SPEC_SRCS)

This section builds ’summary’ lists of source files. These lists are used by the
Make.rules file.

Generic autoconf targets

all: $(DLLS) $(EXES:%=%.so)

@MAKE_RULES@

install::
for i in $(EXES); do $(INSTALL_PROGRAM) $$i $(bindir); done
for i in $(EXES:%=%.so) $(DLLS); do $(INSTALL_LIBRARY) $$i $(lib-

dir); done

uninstall::
for i in $(EXES); do $(RM) $(bindir)/$$i;done
for i in $(EXES:%=%.so) $(DLLS); do $(RM) $(libdir)/$$i;done

14

Chapter 3. The Winelib development toolkit

The above first defines the default target for this makefile. Here it consists in trying to
build all the targets. Then it includes theMake.rules file which contains the build
logic, and provides a few more standard targets to install / uninstall the targets.

Target specific build rules

$(hello_SPEC_SRCS:.spec=.tmp.o): $(hello_OBJS)
$(LDCOMBINE) $(hello_OBJS) -o $@
-$(STRIP) $(STRIPFLAGS) $@

$(hello_SPEC_SRCS:.spec=.spec.c): $(hello_SPEC_SRCS:.spec) $(hello_SPEC_SRCS:.spec=.tmp.o) $(hello_RC_SRCS:.rc=.res)
$(WINEBUILD) -fPIC $(hello_LIBRARY_PATH) $(WINE_LIBRARY_PATH) -

sym $(hello_SPEC_SRCS:.spec=.tmp.o) -o $@ -spec $(hello_SPEC_SRCS)

hello.so: $(hello_SPEC_SRCS:.spec=.spec.o) $(hello_OBJS) $(hello_DEP
ENDS)

$(LDSHARED) $(LDDLLFLAGS) -o $@ $(hello_OBJS) $(hello_SPEC_SRCS:.spec=.spec.o) $(hello_LIBRARY_PATH) $(hello_LIBRARIES:%=-
l%) $(DLL_LINK) $(LIBS)

test -e hello || $(LN_S) $(WINE) hello

Then come additional directives to link the executables and libraries. These are pretty
much standard and you should not need to modify them.

3.1.5. The Make.rules.in file
What’s in the Make.rules.in...

3.1.6. The configure.in file
What’s in the configure.in...

15

Chapter 3. The Winelib development toolkit

3.2. Compiling resource files: WRC
To compile resources you should use the Wine Resource Compiler, wrc for short,
which produces a binary.res file. This resource file is then used by winebuild when
compiling the spec file (seeThe Spec file).

Again the makefiles generated by winemaker take care of this for you. But if you were
to write your own makefile you would put something like the following:

WRC=$(WINE_DIR)/tools/wrc/wrc

WINELIB_FLAGS = -I$(WINE_DIR)/include -DWINELIB -D_REENTRANT
WRCFLAGS = -r -L

.SUFFIXES: .rc .res

.rc.res:
$(WRC) $(WRCFLAGS) $(WINELIB_FLAGS) -o $@ $<

There are two issues you are likely to encounter with resource files.

The first problem is with the C library headers. WRC does not know where these
headers are located. So if an RC file, of a file it includes, references such a header you
will get a ’file not found’ error from wrc. Here are a few ways to deal with this:

• The solution traditionally used by the Winelib headers is to enclose the offending
include statement in an#ifndef RC_INVOKED statement whereRC_INVOKEDis a
macro name which is automatically defined by wrc.

• Alternately you can add one or more-I directive to your wrc command so that it
finds you system files. For instance you may add-I/usr/include

-I/usr/lib/gcc-lib/i386-linux/2.95.2/include to cater to both C and
C++ headers. But this supposes that you know where these header files reside which
decreases the portability of your makefiles to other platforms (unless you
automatically detect all the necessary directories in the autoconf script).

16

Chapter 3. The Winelib development toolkit

Or you could use the C/C++ compiler to perform the preprocessing. To do so, simply
modify your makefile as follows:

.rc.res:
$(CC) $(CC_OPTS) -DRC_INVOKED -E -x c $< | $(WRC) -N $(WRCFLAGS) $(WINELIB_FLAGS) -
o $@

The second problem is that the headers may contain constructs that WRC fails to
understand. A typical example is a function which return a ’const’ type. WRC expects a
function to be two identifiers followed by an opening parenthesis. With the const this is
three identifiers followed by a parenthesis and thus WRC is confused (note: WRC
should in fact ignore all this like the windows resource compiler does). The current
work-around is to enclose offending statement(s) in an#ifndef RC_INVOKED .

Using GIF files in resources is problematic. For best results, convert them to BMP and
change your.res file.

If you use common controls/dialogs in your resource files, you will need to add
#include <commctrl.h> after the#include <windows.h> line, so thatwrc
knows the values of control specific flags.

3.3. Compiling message files: WMC
how does one use it???

17

Chapter 3. The Winelib development toolkit

3.4. The Spec file

3.4.1. Introduction
In Windows the program’s life starts either when itsmain is called, for console
applications, or when itsWinMain is called, for windows applications in the ’windows’
subsystem. On Unix it is alwaysmain that is called. Furthermore in Winelib it has
some special tasks to accomplish, such as initializing Winelib, that a normalmain does
not have to do.

Furthermore windows applications and libraries contain some information which are
necessary to make APIs such asGetProcAddress work. So it is necessary to
duplicate these data structures in the Unix world to make these same APIs work with
Winelib applications and libraries.

The spec file is there to solve the semantic gap described above. It provides themain

function that initializes Winelib and calls the module’sWinMain / DllMain , and it
contains information about each API exported from a Dll so that the appropriate tables
can be generated.

A typical spec file will look something like this:

name hello
type win32
mode guiexe
init WinMain
rsrc resource.res

import winmm.dll

And here are the entries you will probably want to change:

18

Chapter 3. The Winelib development toolkit

name

This is the name of the Win32 module. Usually this is the same as that of the
application or library (but without the ’lib’ and the ’.so’).

mode
init

mode defines whether what you are building is a library,dll , a console
application,cuiexe or a regular graphical applicationguiexe . Theninit

defines what is the entry point of that module. For a library this is customarily set
to DllMain , for a console application this ismain and for a graphical application
this isWinMain .

import

Add an ’import’ statement for each library that this executable depends on. If you
don’t, these libraries will not get initialized in which case they may very well not
work (e.g. winmm).

rsrc

This item specifies the name of the compiled resource file to link with your
module. If your resource file is calledhello.rc then the wrc compilation step
(seeCompiling resource files: WRC) will generate a file calledhello.res . This
is the name you must provide here. Note that because of this you cannot compile
the spec file before you have compiled the resource file. So you should put a rule
like the following in your makefile:

hello.spec.c: hello.res

If your project does not have a resource file then you must omit this entry
altogether.

@

This entry is not shown above because it is not always necessary. In fact it is only

19

Chapter 3. The Winelib development toolkit

necessary to export functions when you plan to dynamically load the library with
LoadLibrary and then do aGetProcAddress on these functions. This is not
necessary if you just plan on linking with the library and calling the functions
normally. For more details about this see:More details.

3.4.2. Compiling it
Compiling a spec file is a two step process. It is first converted into a C file by
winebuild, and then compiled into an object file using your regular C compiler. This is
all taken care of by the winemaker generated makefiles of course. But here’s what it
would like if you had to do it by hand:

WINEBUILD=$(WINE_DIR)/tools/winebuild

.SUFFIXES: .spec .spec.c .spec.o

.spec.spec.c:
$(WINEBUILD) -fPIC -o $@ -spec $<

.spec.c.spec.o:
$(CC) -c -o $*.spec.o $<

Nothing really complex there. Just don’t forget the.SUFFIXES statement, and beware
of the tab if you copy this straight to your Makefile.

3.4.3. More details
(Extracted from tools/winebuild/README)

Here is a more detailed description of the spec file’s format.

comment text

20

Chapter 3. The Winelib development toolkit

Anything after a ’#’ will be ignored as comments.

name NAME
type win16|win32 <--- the |’s mean it’s one or the other

These two fields are mandatory.name defines the name of your module andtype

whether it is a Win16 or Win32 module. Note that for Winelib you should only be
using Win32 modules.

file WINFILENAME

This field is optional. It gives the name of the Windows file that is replaced by the
builtin. <name>.DLL is assumed if none is given. This is important for kernel, which
lives in the Windows fileKRNL386.EXE.

heap SIZE

This field is optional and specific to Win16 modules. It defines the size of the module
local heap. The default is no local heap.

mode dll|cuiexe|guiexe

This field is optional. It specifies specifies whether it is the spec file for a dll or the
main exe. This is only valid for Win32 spec files.

init FUNCTION

This field is optional and specific to Win32 modules. It specifies a function which will
be called when the dll is loaded or the executable started.

import DLL

21

Chapter 3. The Winelib development toolkit

This field can be present zero or more times. Each instance names a dll that this module
depends on (only for Win32 modules at the present).

rsrc RES_FILE

This field is optional. If present it specifies the name of the .res file containing the
compiled resources. SeeCompiling resource files: WRCfor details on compiling a
resource file.

ORDINAL VARTYPE EXPORTNAME (DATA [DATA [DATA [...]]])
2 byte Variable(-1 0xff 0 0)

This field can be present zero or more times. Each instance defines data storage at the
ordinal specified. You may store items as bytes, 16-bit words, or 32-bit words.
ORDINALis replaced by the ordinal number corresponding to the variable.VARTYPE

should bebyte , word or long for 8, 16, or 32 bits respectively.EXPORTNAMEwill be
the name available for dynamic linking.DATAcan be a decimal number or a hex
number preceeded by "0x". The example defines the variableVariable at ordinal 2
and containing 4 bytes.

ORDINAL equate EXPORTNAME DATA

This field can be present zero or more times. Each instance defines an ordinal as an
absolute value.ORDINALis replaced by the ordinal number corresponding to the
variable.EXPORTNAMEwill be the name available for dynamic linking.DATAcan be a
decimal number or a hex number preceeded by "0x".

ORDINAL FUNCTYPE EXPORTNAME([ARGTYPE [ARGTYPE [...]]]) HANDLERNAME
100 pascal CreateWindow(ptr ptr long s_word s_word s_word s_word

word word word ptr)
WIN_CreateWindow

101 pascal GetFocus() WIN_GetFocus()

22

Chapter 3. The Winelib development toolkit

This field can be present zero or more times. Each instance defines a function entry
point. The prototype defined byEXPORTNAME ([ARGTYPE [ARGTYPE [...]]])

specifies the name available for dynamic linking and the format of the arguments.
"ORDINAL" is replaced by the ordinal number corresponding to the function, or@for
automatic ordinal allocation (Win32 only).

FUNCTYPEshould be one of:

pascal16

for a Win16 function returning a 16-bit value

pascal

for a Win16 function returning a 32-bit value

register

for a function using CPU register to pass arguments

interrupt

for a Win16 interrupt handler routine

stdcall

for a normal Win32 function

cdecl

for a Win32 function using the C calling convention

varargs

for a Win32 function taking a variable number of arguments

ARGTYPEshould be one of:

word

for a 16 bit word

23

Chapter 3. The Winelib development toolkit

long

a 32 bit value

ptr

for a linear pointer

str

for a linear pointer to a null-terminated string

s_word

for a 16 bit signed word

segptr

for a segmented pointer

segstr

for a segmented pointer to a null-terminated string

Only ptr , str andlong are valid for Win32 functions.HANDLERNAMEis the name of
the actual Wine function that will process the request in 32-bit mode.

The two examples define an entry point for theCreateWindow andGetFocus calls
respectively. The ordinals used are just examples.

To declare a function using a variable number of arguments in Win16, specify the
function as taking no arguments. The arguments are then available with
CURRENT_STACK16->args. In Win32, specify the function asvarargs and declare
it with a ’...’ parameter in the C file. See the wsprintf* functions inuser.spec and
user32.spec for an example.

ORDINAL stub EXPORTNAME

This field can be present zero or more times. Each instance defines a stub function. It
makes the ordinal available for dynamic linking, but will terminate execution with an

24

Chapter 3. The Winelib development toolkit

error message if the function is ever called.

ORDINAL extern EXPORTNAME SYMBOLNAME

This field can be present zero or more times. Each instance defines an entry that simply
maps to a Wine symbol (variable or function);EXPORTNAMEwill point to the symbol
SYMBOLNAMEthat must be defined in C code. This type only works with Win32.

ORDINAL forward EXPORTNAME SYMBOLNAME

This field can be present zero or more times. Each instance defines an entry that is
forwarded to another entry point (kind of a symbolic link).EXPORTNAMEwill forward
to the entry pointSYMBOLNAMEthat must be of the formDLL.Function . This type
only works with Win32.

3.5. Linking it all together
To link an executable you need to link together: your object files, the spec file, any
Windows libraries that your application depends on, gdi32 for instance, and any
additional library that you use. All the libraries you link with should be available as
’.so’ libraries. If one of them is available only in ’.dll’ form then consultDealing with
binary only dlls.

It is also when attempting to link your executable that you will discover whether you
have missing symbols or not in your custom libraries. On Windows when you build a
library, the linker will immediately tell you if a symbol it is supposed to export is
undefined. In Unix, and in Winelib, this is not the case. The symbol will silently be
marked as undefined and it is only when you try to produce an executable that the
linker will verify all the symbols are accounted for.

So before declaring victory when first converting a library to Winelib, you should first
try to link it to an executable (but you would have done that to test it anyway, right?).

25

Chapter 3. The Winelib development toolkit

At this point you may discover some undefined symbols that you thought were
implemented by the library. Then, you to the library sources and fix it. But you may
also discover that the missing symbols are defined in, say, gdi32. This is because you
did not link the said library with gdi32. One way to fix it is to link this executable, and
any other that also uses your library, with gdi32. But it is better to go back to your
library’s makefile and explicitly link it with gdi32.

As you will quickly notice, this has unfortunately not been (completely) done for
Winelib’s own libraries. So if an application must link with ole32, you will also need to
link with advapi32, rpcrt4 and others even if you don’t use them directly. This can be
annoying and hopefully will be fixed soon (feel free to submit a patch).

26

Chapter 4. Dealing with the MFC

4.1. Introduction
To use the MFC in a Winelib application you will first have to recompile the MFC with
Winelib. In theory it should be possible to write a wrapper for the Windows MFC as
described inDealing with binary only dlls. But in practice it does not seem to be a
realistic approach for the MFC:

• the huge number of APIs makes writing the wrapper a big task in itself.

• furthermore the MFC contain a huge number of APIs which are tricky to deal with
when making a wrapper.

• even once you have written the wrapper you will need to modify the MFC headers
so that the compiler does not choke on them.

• a big part of the MFC code is actually in your application in the form of macros.
This means even more of the MFC headers have to actually work to in order for you
to be able to compile an MFC based application.

This is why this guide includes a section dedicated to helping you compile the MFC
with Winelib.

4.2. Legal issues
(Extracted from the HOWTO-Winelib written by Wilbur Dale
<wilbur.dale@lumin.nl>)

The purpose of this section is to make you aware of potential legal problems. Be sure to
read your licenses and to consult your lawyers. In any case you should not consider the
remainder of this section to be authoritative since it has not been written by a lawyer.

27

Chapter 4. Dealing with the MFC

Well, let’s try to have a look at the situation anyway.

During the compilation of your program, you will be combining code from several
sources: your code, Winelib code, Microsoft MFC code, and possibly code from other
vendor sources. As a result, you must ensure that the licenses of all code sources are
obeyed. What you are allowed and not allowed to do can vary depending on how you
compile your program and if you will be distributing it. For example, if you are
releasing your code under the GPL, you cannot link your code to MFC code because
the GPL requires that you provide ALL sources to your users. The MFC license forbids
you from distributing the MFC source so you cannot both distribute your program and
comply with the GPL license. On the other hand, if your code is released under the
LGPL, you cannot statically link your program to the MFC and distribute it, but you
can dynamically link your LGPL code and the MFC library and distribute it.

Wine/Winelib is distributed under an X11-like license. It places few restrictions on the
use and distribution of Wine/Winelib code. I doubt the Wine license will cause you any
problems. On the other hand, MFC is distributed under a very restrictive license and the
restrictions vary from version to version and between service packs. There are basically
three aspects you must be aware of when using the MFC.

First you must legally get MFC source code on your computer. The MFC source code
comes as a part of Visual Studio. The license for Visual Studio implies it is a single
product that can not be broken up into its components. So the cleanest way to get MFC
on your system is to buy Visual Studio and install it on a dual boot Linux box.

Then you must check that you are allowed to recompile MFC on a non-Microsoft
operating system! This varies with the version of MFC. The MFC license from Visual
Studio 6.0 reads in part:

1.1 General License Grant. Microsoft grants to you as an individual, a personal,
nonexclusive license to make and use copies of the SOFTWARE PRODUCT for the sole
purposes of designing, developing, and testing your software product(s) that are designed to
operate in conjunction with any Microsoft operating system product. [Other unrelated stuff
deleted.]

So it appears you cannot even compile MFC for Winelib using this license. Fortunately

28

Chapter 4. Dealing with the MFC

the Visual Studio 6.0 service pack 3 license reads (the Visual Studio 5.0 license is
similar):

1.1 General License Grant. Microsoft grants to you as an individual, a personal,
nonexclusive license to make and use copies of the SOFTWARE PRODUCT for the
purpose of designing, developing, and testing your software product(s). [Other unrelated
stuff deleted]

So under this license it appears you can compile MFC for Winelib.

Finally you must check whether you have the right to distribute an MFC library. Check
the relevant section of the license on “redistributables and your redistribution rights”.
The license seems to specify that you only have the right to distribute binaries of the
MFC library if it has no debug information and if you distribute it with an application
that provides significant added functionality to the MFC library.

4.3. Compiling the MFC
Things to disable, why we have to disable them (lack of Wine support), where things
don’t compile, why, how to solve it, what to put in the Makefile, maybe try to point to a
place with a ready-made makefile...

4.4. Using the MFC

Specific winemaker options, the configure options, the initialization problem...

29

Chapter 5. Dealing with binary only dlls

5.1. Introduction
describe the problem, use an example and reuse it in the following sections...

5.2. Writing the spec file
give an example...

5.3. How to deal with C++ APIs
names are mangled, how to demangle them, how to call them

5.4. Writing the wrapper
give an example

30

Chapter 6. Packaging your Winelib
application

Selecting which libraries to deliver, how to avoid interference with other Winelib
applications, how to play nice with other Winelib applications

31

Wine Packagers Guide

Wine Packagers Guide

Table of Contents
1. Preface...1

1.1. Authors..1
1.2. Document Revision Date..1
1.3. Terms used in this document...1

2. Introduction ..1

2.1. Goals...1
2.2. Requirements..2

3. Wine Components..4

3.1. Wine Static and Shareable Files..4
3.2. Dynamic Wine Files..7
3.3. Important Files from a Windows Partition..10

4. Packaging Strategies..12

4.1. Distribution of Wine into packages...12
4.2. Where to install files...12

4.2.1. The question of /opt/wine..13
4.3. What files to create..13
4.4. What to put into the wine config file...14

5. Implementation..16

5.1. OpenLinux Sample...16
5.1.1. Samplewine.ini for OpenLinux 2.x:...21

6. Work to be done...30

34

Chapter 1. Preface

1.1. Authors
Written by Marcus Meissner <Marcus.Meissner@caldera.de > Updated by Jeremy
White <jwhite@codeweavers.com >

1.2. Document Revision Date
The information contained in this document is extremely time sensitive.It is vital that a
packager stay current with changes in Wine.

This document was last revised on November 2, 2000.

1.3. Terms used in this document
There are several terms and paths used in this document as place holders for
configurable values. Those terms are described here.

1. WINECONFDIR

WINECONFDIR is the users Wine configuration directory. This is almost always
~/.wine, but can be overridden by the user by setting the WINECONFDIR
environment variable.

2. PREFIX

PREFIX is the prefix used when selecting an installation target. The current default
is /usr. This results in binary installation into /usr/bin, library installation into

1

Chapter 1. Preface

/usr/wine/lib, and so forth. This value can be overridden by the packager. In fact,
FHS 2.1 (http://www.pathname.com/fhs/) specifications suggest that a better prefix
is /opt/wine. Ideally, a packager would also allow the installer to override this
value.

3. ETCDIR

ETCDIR is the prefix that Wine uses to find the global configuration directory.
This can be changed by the configure option sysconfdir. The current default is /etc.

4. WINDOWSDIR

WINDOWSDIR is an important concept to Wine. This directory specifies what
directory corresponds to the root Windows directory (e.g. C:\WINDOWS).

This directory is specified by the user, in the usersconfiguration file.

Generally speaking, this directory is either set to point at an empty directory, or it
is set to point at a Windows partition that has been mounted through the vfat driver.

It is extremely important that the packager understand the importance of
WINDOWSDIR and convey this information and choice to the end user.

2

Chapter 2. Introduction
This document attempts to establish guidelines for people making binary packages of
Wine.

It expresses the basic principles that the Wine developers have agreed should be used
when building Wine. It also attempts to highlight the areas where there are different
approaches to packaging Wine, so that the packager can understand the different
alternatives that have been considered and their rationales.

2.1. Goals
An installation from a Wine pacakage should:

• Install quickly and simply.

The initial installation should require no user input. An rpm -i wine.rpm or apt get
wine should suffice for initial installation.

• Work quickly and simply

The user should be able to launch Solitaire within minutes of downloading the Wine
package.

• Comply with Filesystem Hierarchy Standard

A Wine installation should, as much as possible, comply with the FHS standard
(http://www.pathname.com/fhs/).

• Preserve flexibility

None of the flexibility built into Wine should be hidden from the end user.

1

Chapter 2. Introduction

• Come as preconfigured as possible, so the user does not need to change any
configuration files.

• Use only as much diskspace as needed per user.

• Reduce support requirements.

A packaged version of Wine should be sufficiently easy to use and have quick and
easy access to FAQs and documentation such that requests to the newsgroup and
development group go down. Further, it should be easy for users to capture good bug
reports.

2.2. Requirements
Successfully installing Wine requires:

• Much thought and work from the packager (1x)

• A configuration file

Wine will not run with out a configuration file. Further, no default is currently
provided by Wine. Some packagers may attempt to provide (or dynamically
generate) a default configuration file. Some packagers may wish to rely on winecfg
to generate the configuration file.

• A writeableC:\ directory structure on a per user basis. Applications do dump.ini

files intoc:\windows , installers dump.exe , .dll and more intoc:\windows\

and subdirectories or intoC:\Program Files\ .

• An initial set of registry entries.

The current Wine standard is to use the regapi tool against the ’winedefault.reg’ file
to generate a default registry.

2

Chapter 2. Introduction

There are several other choices that could be made; registries can be imported from a
Windows partition. At this time, Wine does not completely support a complex multi
user installation, ala Windows NT, but it could fairly readily.

• Some special.dll and.exe files in thewindows\system directory, since
applications directly check for their presence.

3

Chapter 3. Wine Components
This section lists all files that pertain to Wine.

3.1. Wine Static and Shareable Files
At the time of this writing, the following components are installed through a standard
’make install’ of Wine.

Caution
It is vital that a packager check for changes in Wine. This list will
likely be out of date by the time this document is committed to
CVS.

1.

Executable Files

wine

The main Wine executable. This program will load a Windows binary and
run it, relying upon the Wine shared object libraries.

wineserver

The Wine server is critical to Wine; it is the process that coordinates all
shared Windows resources.

4

Chapter 3. Wine Components

wineclipsrv

The Wine Clipboard Server is a standalone XLib application whose purpose
is to manage the X selection when Wine exits.

winedbg

Winedbg is the Wine built in debugger.

winecfg

This is a Tcl/Tk based front end that provides a user friendly tool to edit and
configure theWINECONFDIR/config file.

wineshelllink

This shell script can be called by Wine in order to propogate Desktop icon
and menu creation requests out to a GNOME or KDE (or other Window
Managers).

winebuild

Winebuild is a tool used for Winelib applications (and by Wine itself) to
allow a developer to compile a .spec file into a .spec.c file.

wmc

The wmc tools is the Wine Message Compiler. It allows Windows message
files to be compiled into a format usable by Wine.

wrc

The wrc tool is the Wine Resource Compiler. It allows Winelib programmers
(and Wine itself) to compile Windows style resource files into a form usable
by Wine.

fnt2bdf

The fnt2bdf utility extracts fonts from .fnt or .dll files and stores then in .dbf
format files.

5

Chapter 3. Wine Components

dosmod

DOS Virtual Machine.

2. Shared Object Library Files
libwine.so.1.0 libdsound.so.1.0 liboleaut32.so.1.0 libshlwapi.so.1.0 libmciavi.drv.so.1.0
libddraw.so.1.0 libgdi32.so.1.0 libolecli32.so.1.0 libtapi32.so.1.0 libmcicda.drv.so.1.0
libopengl32.so.1.0 libicmp.so.1.0 liboledlg.so.1.0 libttydrv.so.1.0 libmciseq.drv.so.1.0
libx11drv.so.1.0 libimagehlp.so.1.0 libolepro32.so.1.0 liburlmon.so.1.0 libmciwave.drv.so.1.0
libadvapi32.so.1.0 libimm32.so.1.0 libolesvr32.so.1.0 libuser32.so.1.0 libmidimap.drv.so.1.0
libavifil32.so.1.0 libkernel32.so.1.0 libpsapi.so.1.0 libversion.so.1.0 libmsacm.drv.so.1.0
libcomctl32.so.1.0 liblz32.so.1.0 librasapi32.so.1.0 libw32skrnl.so.1.0 libwineoss.drv.so.1.0
libcomdlg32.so.1.0 libmpr.so.1.0 libriched32.so.1.0 libwnaspi32.so.1.0 libws2_32.so.1.0
libcrtdll.so.1.0 libmsacm32.so.1.0 librpcrt4.so.1.0 libwineps.so.1.0 libwinspool.drv.so.1.0
libdciman32.so.1.0 libmsnet32.so.1.0 libserialui.so.1.0 libwininet.so.1.0 libwow32.so.1.0
libdinput.so.1.0 libmsvfw32.so.1.0 libsetupapi.so.1.0 libjoystick.drv.so.1.0 libwsock32.so.1.0
libdplay.so.1.0 libodbc32.so.1.0 libshell32.so.1.0 libwinmm.so.1.0 libwine_unicode.so.1.0
libdplayx.so.1.0 libole32.so.1.0 libshfolder.so.1.0 libmcianim.drv.so.1.0

3. Man Pages
wine.man
wine.conf.man
wmc.man
wrc.man

4. Include Files
basetsd.h lzexpand.h rpc.h wine/obj_channel.h wine/obj_shellfolder.h
cderr.h mapidefs.h servprov.h wine/obj_clientserver.h wine/obj_shelllink.h
cguid.h mcx.h shellapi.h wine/obj_commdlgbrowser.h wine/obj_shellview.h
commctrl.h mmreg.h shlguid.h wine/obj_connection.h wine/obj_storage.h
commdlg.h mmsystem.h shlobj.h wine/obj_contextmenu.h wine/unicode.h
compobj.h msacm.h shlwapi.h wine/obj_control.h winerror.h
d3d.h ntsecapi.h sql.h wine/obj_dataobject.h wingdi.h
d3dcaps.h oaidl.h sqlext.h wine/obj_dockingwindowframe.h wininet.h
d3dtypes.h objbase.h sqltypes.h wine/obj_dragdrop.h winioctl.h
d3dvec.inl objidl.h storage.h wine/obj_enumidlist.h winnetwk.h
dde.h ocidl.h tapi.h wine/obj_errorinfo.h winnls.h
ddeml.h ole2.h tlhelp32.h wine/obj_extracticon.h winnt.h
ddraw.h ole2ver.h unknwn.h wine/obj_inplace.h winreg.h
digitalv.h oleauto.h urlmon.h wine/obj_marshal.h winresrc.h

6

Chapter 3. Wine Components

dinput.h olectl.h ver.h wine/obj_misc.h winsock.h
dispdib.h oledlg.h vfw.h wine/obj_moniker.h winsock2.h
dlgs.h oleidl.h winbase.h wine/obj_oleaut.h winspool.h
docobj.h poppack.h wincon.h wine/obj_olefont.h winsvc.h
dplay.h prsht.h wincrypt.h wine/obj_oleobj.h winuser.h
dplobby.h psapi.h windef.h wine/obj_oleundo.h winver.h
dsound.h pshpack1.h windows.h wine/obj_oleview.h wnaspi32.h
guiddef.h pshpack2.h windowsx.h wine/obj_picture.h wownt32.h
imagehlp.h pshpack4.h wine/exception.h wine/obj_property.h wtypes.h
imm.h pshpack8.h wine/icmpapi.h wine/obj_propertystorage.h zmouse.h
initguid.h ras.h wine/ipexport.h wine/obj_queryassociations.h
instance.h regstr.h wine/obj_base.h wine/obj_shellbrowser.h
lmcons.h richedit.h wine/obj_cache.h wine/obj_shellextinit.h

5. Documentation files.

At the time of this writing, I do not have a definitive list of documentation files to
be installed. However, they do include the HTML files generated from the SGML
in the Wine CVS tree.

3.2. Dynamic Wine Files
Wine also generates and depends on a number of dynamic files, including user
configuration files and registry files.

At the time of this writing, there was not a clear consensus of where these files should
be located, and how they should be handled. This section attempts to explain the
alternatives clearly.

1.

7

Chapter 3. Wine Components

Configuration File

WINECONFDIR/config

This file is the user local Wine configuration file. At the time of this writing,
if this file exists, then no other configuration file is loaded.

ETCDIR/wine.conf

This is the global Wine configuration file. It is only used if the user running
Wine has no local configuration file.

Some packagers feel that this file should not be supplied, and that only a
wine.conf.default should be given here.

Other packagers feel that this file should be the predominant file used, and
that users should only shift to a local configuration file if they need to. An
argument has been made that the local configuration file should inherit the
global configuration file. At this time, Wine does not do this; please refer to
the WineHQ discussion archives for the debate concerning this.

This debate is addressed more completely below, inPackaging Strategies.

2. Registry Files

In order to replicate the Windows registry system, Wine stores registry entries in a
series of files. For an excellent overview of this issue, read this Wine Weekly
News feature. (http://www.winehq.com/News/2000-25.html#FTR)

The bottom line is that, at Wine server startup, Wine loads all registry entries into
memory to create an in memory image of the registry. The order of files which
Wine uses to load registry entries is extremely important, as it affects what registry
entries are actually present. The order is roughly that .dat files from a Windows
partion are loaded, then global registry settings fromETCDIR, and then finally
local registry settings are loaded fromWINECONFDIR. As each set are loaded,
they can override the prior entries. Thus, the local registry files take precedence.

8

Chapter 3. Wine Components

Then, at exit (or at periodic intervals), Wine will write either all registry entries (or,
with the default setting) changed registry entries to files in theWINECONFDIR.

WINECONFDIR/system.reg

This file contains the users local copy of the HKEY_LOCAL_MACHINE
registry hive. In general use, it will contain only changes made to the default
registry values.

WINECONFDIR/user.reg

This file contains the users local copy of the HKEY_CURRENT_USER
registry hive. In general use, it will contain only changes made to the default
registry values.

WINECONFDIR/userdef.reg

This file contains the users local copy of the HKEY_USERS\.Default registry
hive. In general use, it will contain only changes made to the default registry
values.

WINECONFDIR/wine.userreg

This file is being deprecated. It is only read if there is no user.reg or
wine.userreg, and it supplied the contents of HKEY_USERS.

ETCDIR/wine.systemreg

This file contains the global values for HKEY_LOCAL_MACHINE. The
values in this file can be overriden by the users local settings.

Note: The location of this directory is hard coded within wine, generally
to /etc. This will hopefully be fixed at some point in the future.

9

Chapter 3. Wine Components

ETCDIR/wine.userreg

This file contains the global values for HKEY_USERS. The values in this file
can be overriden by the users local settings. This file is likely to be deprecated
in favor of a global wine.userdef.reg that will only contain
HKEY_USERS/.Default.

3.

Other files in WINECONFDIR

WINECONFDIR/wineserver-[username]

This directory contains files used by Wine and the Wineserver to
communicate. A packager may want to have a facility for the user to erase
files in this directory, as a crash in the wineserver resulting in a bogus lock file
can render wine unusable.

WINECONFDIR/cachedmetrics.[display]

This file contains font metrics for the given X display. Generally, this cache is
generated once at Wine start time.

3.3. Important Files from a Windows Partition
Wine has the ability to use files from an installation of the actual Microsoft Windows
operating system. Generally these files are loaded on a VFAT partition that is mounted
under Linux.

This is probably the most important configuration detail. The use of Windows registry
and DLL files dramatically alters the behaviour of Wine. If nothing else, pacakager
have to make this distinction clear to the end user, so that they can intelligently choose
their configuration.

10

Chapter 3. Wine Components

1.

Registry Files

[WINDOWSDIR]/system32/system.dat

[WINDOWSDIR]/system32/user.dat

[WINDOWSDIR]/win.ini

2. Windows Dynamic Link Libraries ([WINDOWSDIR]/system32/*.dll)

Wine has the ability to use the actuall Windows DLL files when running an
application. An end user can configure Wine so that Wine uses some or all of these
DLL files when running a given application.

11

Chapter 4. Packaging Strategies
There has recently been a lot of discussion on the Wine development mailing list about
the best way to build Wine packages.

There was a lot of discussion, and several diverging points of view. This section of the
document attempts to present the areas of common agreement, and also to present the
different approaches advocated on the mailing list.

4.1. Distribution of Wine into packages
The most basic question to ask is given the Wine CVS tree, what physical files are you,
the packager, going to produce? Are you going to produce only a wine.rpm (as Marcus
has done), or are you going to produce 5 debian files (libwine-dev, libwine, wine-doc,
wine-utils, and wine) as Ove has done?

At this point, there is no consensus amongst the wine-devel community on this subject.

4.2. Where to install files
This question is not really contested. It will vary by distribution, and is really up to the
packager. As a guideline, the current ’make install’ process seems to behave such that if
we pick a singlePREFIX, then :

1. all binary filesgo intoPREFIX/bin,

2. all library filesgo intoPREFIX/lib,

3. all include filesgo intoPREFIX/include,

4. all documentation filesgo intoPREFIX/doc/wine,

5. andman pagesgo intoPREFIX/man,

12

Chapter 4. Packaging Strategies

Refer to the specific information on the Debian package and the OpenLinux package
for specific details on how those packages are built.

4.2.1. The question of /opt/wine
The FHS 2.1 specification suggests that Wine as a package should be installed to
/opt/wine. None of the existing packages follow this guideline (today; check again
tomorrow).

4.3. What files to create
After installing the static and shareable files, the next question the packager needs to
ask is how much dynamic configuration will be done, and what configuration files
should be created.

There are several approaches to this:

1. Rely completely on user file space - install nothing

This approach relies upon the new winecfg utility and the new ability of Wine to
launch winecfg if no configuration file is found. The basic concept is that no global
configuration files are created at install time. Instead, Wine configuration files are
created on the fly by the winecfg program when Wine is invoked. Further, winecfg
creates default Windows directories and paths that are stored completely in the
usersWINECONFDIR.

This approach has the benefit of simplicity in that all Wine files are either stored
under /opt/wine or under ~/.wine. Further, there is only ever one Wine
configuration file.

This approach, however, adds another level of complexity. It does not allow Wine
to run Solitaire ’out of the box’; the user must run the configuration program first.
Further, winecfg requires Tcl/Tk, a requirement not beloved by some.

13

Chapter 4. Packaging Strategies

Additionally, this approach closes the door on multi user configurations and
presumes a single user approach.

2. Build a reasonable set of defaults for the global wine.conf, facilitate creation of a
user’s local Wine configuration.

This approach, best shown by Marcus, causes the installation process to auto scan
the system, and generate a global wine.conf file with best guess defaults. The
OpenLinux packages follow this behaviour.

The keys to this approach are always putting an existing Windows partition into
the path, and being able to run Solitaire right out of the box. Another good thing
that Marcus does is he detects a first time installation and does some clever things
to improve the user’s Wine experience.

A flaw with this approach, however, is it doesn’t give the user an obvious way to
choose not to use a Windows partition.

3. Build a reasonable set of defaults for the global wine.conf, and ask the user if
possible

This approach, demonstrated by Ove, causes the installation process to auto scan
the system, and generate a global wine.conf file with best guess defaults. Because
Ove built a Debian package, he was able to further query debconf and get
permission to ask the user some questions, allowing the user to decide whether or
not to use a Windows partition.

4.4. What to put into the wine config file
The next hard question is what the Wine config should look like. The current best

14

Chapter 4. Packaging Strategies

practices seems to involve using drives from M to Z.

Caution
This isn’t done yet! Fix it, Jer!

15

Chapter 5. Implementation

5.1. OpenLinux Sample

1. Building the package

WINE is configured the usual way (depending on your build environment). The
"prefix" is chosen using your application placement policy (/usr/ ,
/usr/X11R6/ , /opt/wine/ or similar). The configuration files (wine.conf ,
wine.userreg , wine.systemreg) are targeted for/etc/wine/ (rationale:
FHS 2.0, multiple readonly configuration files of a package).

Example (split this into%build and%install section forrpm):

CFLAGS=$RPM_OPT_FLAGS \
./configure --prefix=/usr/X11R6 --sysconfdir=/etc/wine/ --enable-
dll
make
BR=$RPM_BUILD_ROOT
make install prefix=$BR/usr/X11R6/ sysconfdir=$BR/etc/wine/
install -d $BR/etc/wine/
install -m 644 wine.ini $BR/etc/wine/wine.conf

Put all our dlls in a seperate directory. (this works only if
you have a buildroot)
install -d $BR/usr/X11R6/lib/wine
mv $BR/usr/X11R6/lib/lib* $BR/usr/X11R6/lib/wine/

the clipboard server is started on demand.
install -m 755 windows/x11drv/wineclipsrv $BR/usr/X11R6/bin/

The WINE server is needed.
install -m 755 server/wineserver $BR/usr/X11R6/bin/

16

Chapter 5. Implementation

Here we unfortunately do need to createwineuser.reg andwinesystem.reg

from the WINE distributedwinedefault.reg . This can be done using./regapi
once for one example user and then reusing hisWINECONFDIR/user.reg and
WINECONFDIR/system.reg files.

FIXME: this needs to be done better

install -m 644 wine.sytemreg $BR/etc/wine/
install -m 644 wine.userreg $BR/etc/wine/

There are now a lot of libraries generated by the build process, so a seperate library
directory should be used.

install -d 755 $BR/usr/X11R6/lib/
mv $BR/

You will need to package the files:

$prefix/bin/wine, $prefix/bin/dosmod, $prefix/lib/wine/*
$prefix/man/man1/wine.1, $prefix/include/wine/*,
$prefix/bin/wineserver, $prefix/bin/wineclipsrv

%config /etc/wine/*
%doc ... choose from the toplevel directory and documentation/

The post-install script:

if ! grep -q /usr/X11R6/lib/wine /etc/ld.so.conf; then
echo "/usr/X11R6/lib/wine" >> /etc/ld.so.conf

fi
/sbin/ldconfig

The post-uninstall script:

17

Chapter 5. Implementation

if ["$1" = 0]; then
perl -ni -e ’print unless m:/usr/X11R6/lib/wine:;’ /etc/ld.so.conf

fi
/sbin/ldconfig

2. Creating a good default configuration file

For the rationales of needing as less input from the user as possible arises the need
for a very good configuration file. The one supplied with WINE is currently
lacking. We need:

• [Drive X]:

• A for the floppy. Specify your distributions default floppy mountpoint here.

Path=/auto/floppy

• C for theC:\ directory. Here we use the users homedirectory, for most
applications do seeC:\ as root-writeable directory of every windows
installation and this basically is it in the UNIX-user context.

Path=${HOME}

• R for the CD-Rom drive. Specify your distributions default CD-ROM drives
mountpoint here.

Path=/auto/cdrom

• T for temporary storage. We do use/tmp/ (rationale: between process
temporary data belongs to/tmp/ , FHS 2.0)

18

Chapter 5. Implementation

• W for the original Windows installation. This drive points to thewindows\

subdirectory of the original windows installation. This avoids problems with
renamedwindows directories (as for instancelose95 , win or sys\win95).
During compile/package/install we leave this to be/ , it has to be configured
after the package install.

• Z for the UNIX Root directory. This avoids any problems with "could not
find drive for current directory" users occasionaly complain about in the
newsgroup and the ircchannel. It also makes the whole directory structure
browseable. The type of Z should be network, so applications expect it to be
readonly.

Path=/

• [wine]:

Windows=c:\windows\ (the windows/ subdirectory in the users
homedirectory)

System=c:\windows\system\ (the windows/system subdirectory in the users
homedirectory)

Path=c:\windows;c:\windows\system;c:\windows\system32;w:\;w:\system;w:\system32;
; Using this trick we have in fact two windows installations in one, we
; get the stuff from the readonly installation and can write to our own.
Temp=t:\ (the TEMP directory)

• [Tweak.Layout]

WineLook=win95 (just the coolest look ;)

• Possibly modify the [spooler], [serialports] and [parallelports] sections.

19

Chapter 5. Implementation

FIXME: possibly more, including printer stuff.

Add this prepared configuration file to the package.

3. Installing WINE for the system administrator

Install the package using the usual packagerrpm -i wine.rpm . You may edit
/etc/wine/wine.conf , [Drive W], to point to a possible windows installation
right after the install. That’s it.

Note that on Linux you should somehow try to add theunhide mount option (see
man mount) to the CD-ROM entry in/etc/fstab during package install, as
several stupid Windows programs mark some setup (!) files as hidden (ISO9660)
on CD-ROMs, which will greatly confuse users as they won’t find their setup files
on the CD-ROMs as they were used on Windows systems whenunhide is not set
;-\ And of course the setup program will complain thatsetup.ins or some other
mess is missing... If you choose to do so, then please make this change verbose to
the admin.

4. Installing WINE for the user

The user will need to run a setup script before the first invocation of WINE. This
script should:

• Copy /etc/wine/wine.conf for user modification.

• Allow specification of the original windows installation to use (which modifies
the copiedwine.conf file).

• Create the windows directory structure (c:\windows , c:\windows\system ,
c:\windows\Start Menu\Programs , c:\Program Files , c:\Desktop ,
etc.)

20

Chapter 5. Implementation

• Symlink all .dll and.exe files from the original windows installation to the
windows directory. Why? Some programs reference "%windowsdir%/file.dll"
or "%systemdir%/file.dll" directly and fail if they are not present.

This will give a huge number of symlinks, yes. However, if an installer later
overwrites on of those files, it will overwrite the symlink (so that the file now
lies in thewindows/ subdirectory).

FIXME: Not sure this is needed for all files.

• On later invocation the script might want to compare regular files in the users
windows directories and in the global windows directories and replace same
files by symlinks (to avoid diskspace problems).

5.1.1. Sample wine.ini for OpenLinux 2.x:

;;
;; MS-DOS drives configuration
;;
;; Each section has the following format:
;; [Drive X]
;; Path=xxx (Unix path for drive root)
;; Type=xxx (supported types are ’floppy’, ’hd’, ’cdrom’ and ’network’)
;; Label=xxx (drive label, at most 11 characters)
;; Serial=xxx (serial number, 8 characters hexadecimal number)
;; Filesystem=xxx (supported types are ’msdos’/’dos’/’fat’, ’win95’/’vfat’, ’unix’)
;; This is the FS Wine is supposed to emulate on a certain
;; directory structure.
;; Recommended:
;; - "win95" for ext2fs, VFAT and FAT32

21

Chapter 5. Implementation

;; - "msdos" for FAT16 (ugly, upgrading to VFAT driver strongly recommended)
;; DON’T use "unix" unless you intend to port programs using Winelib !
;; Device=/dev/xx (only if you want to allow raw device access)
;;

;
;
; Floppy ’A’ and ’B’
;
; OpenLinux uses an automounter under /auto/, so we use that too.
;
[Drive A]
Path=/auto/floppy/
Type=floppy
Label=Floppy
Serial=87654321
Device=/dev/fd0
Filesystem=win95

;
; Comment in ONLY if you have a second floppy or the automounter hangs
; for 5 minutes.
;
;[Drive B]
;Path=/auto/floppy2/
;Type=floppy
;Label=Floppy
;Serial=87654321
;Device=/dev/fd1
;Filesystem=win95

;
; Drive ’C’ links to the users homedirectory.
;
; This must point to a writeable directory structure (not your readonly
; mounted DOS partitions!) since programs want to dump stuff into

22

Chapter 5. Implementation

; "Program Files/" "Programme/", "windows/", "windows/system/" etc.
;
; The basic structure is set up using the config script.
;
[Drive C]
Path=${HOME}
Type=hd
Label=MS-DOS
Filesystem=win95

;
; /tmp/ directory
;
; The temp drive (and directory) points to /tmp/. Windows programs fill it
; with junk, so it is approbiate.
;
[Drive T]
Path=/tmp
Type=hd
Label=Tmp Drive
Filesystem=win95

;
; ’U’ser homedirectory
;
; Just in case you want C:\ elsewhere.
;
[Drive U]
Path=${HOME}
Type=hd
Label=Home
Filesystem=win95

;
; CD-’R’OM drive (automounted)
;
; The default cdrom drive.

23

Chapter 5. Implementation

;
; If an application (or game) wants a specific CD-ROM you might have to
; temporary change the Label to the one of the CD itself.
;
; How to read them is described in /usr/doc/wine-cvs-xxxxx/cdrom-
labels.
;
[Drive R]
Path=/auto/cdrom
Type=cdrom
Label=CD-Rom
Filesystem=win95

;
; The drive where the old windows installation resides (it points to the
; windows/ subdirectory).
;
; The Path is modified by the winesetup script.
;
[Drive W]
Path=/
Type=network
Label=Windows
Filesystem=win95
;
; The UNIX Root directory, so all other programs and directories are reachable.
;
; type network is used to tell programs to not write here.
;
[Drive Z]
Path=/
Type=network
Label=ROOT
Filesystem=win95

;
; Standard Windows path entries. WINE will not work if they are incorrect.

24

Chapter 5. Implementation

;
[wine]
;
; The windows/ directory. It must be writeable, for programs write into it.
;
Windows=c:\windows
;
; The windows/system/ directory. It must be writeable, for especially setup
; programs install dlls in there.
;
System=c:\windows\system
;
; The temp directory. Should be cleaned regulary, since install pro-
grams leave
; junk without end in there.
;
Temp=t:\
;
; The dll search path. It should contain at least:
; - the windows and the windows/system directory of the user.
; - the global windows and windows/system directory (from a possi-
ble readonly
; windows installation either on msdos filesystems or somewhere in the UNIX
; directory tree)
; - any other windows style directories you want to add.
;
Path=c:\windows;c:\windows\system;c:\windows\system32;t:\;w:\;w:\system;w:\system32
;
; Outdated and no longer used. (but needs to be present).
;
SymbolTableFile=./wine.sym

<wineconf>

;
; Dll loadorder defaults. No need to modify.
;

25

Chapter 5. Implementation

[DllDefaults]
EXTRA_LD_LIBRARY_PATH=${HOME}/wine/cvs/lib
DefaultLoadOrder = native, elfdll, so, builtin

;
; What 32/16 dlls belong to each other (context wise). No need to modify.
;
[DllPairs]
kernel = kernel32
gdi = gdi32
user = user32
commdlg = comdlg32
commctrl= comctl32
ver = version
shell = shell32
lzexpand= lz32
mmsystem= winmm
msvideo = msvfw32
winsock = wsock32

;
; What type of dll to use in their respective loadorder.
;
[DllOverrides]
kernel32, gdi32, user32 = builtin
kernel, gdi, user = builtin
toolhelp = builtin
comdlg32, commdlg = elfdll, builtin, native
version, ver = elfdll, builtin, native
shell32, shell = builtin, native
lz32, lzexpand = builtin, native
commctrl, comctl32 = builtin, native
wsock32, winsock = builtin
advapi32, crtdll, ntdll = builtin, native
mpr, winspool = builtin, native
ddraw, dinput, dsound = builtin, native
winmm, mmsystem = builtin

26

Chapter 5. Implementation

msvideo, msvfw32 = builtin, native
mcicda.drv, mciseq.drv = builtin, native
mciwave.drv = builtin, native
mciavi.drv, mcianim.drv = native, builtin
w32skrnl = builtin
wnaspi32, wow32 = builtin
system, display, wprocs = builtin
wineps = builtin

;
; Options section. Does not need to be edited.
;
[options]
; allocate how much system colors on startup. No need to modify.
AllocSystemColors=100

;;
; Font specification. You usually do not need to edit this section.
;
; Read documentation/fonts before adding aliases
;
[fonts]
; The resolution defines what fonts to use (usually either 75 or 100 dpi fonts,
; or nearest match).
Resolution = 96
; Default font
Default = -adobe-times-

;
; serial ports used by "COM1" "COM2" "COM3" "COM4". Useful for applications
; that try to access serial ports.
;
[serialports]
Com1=/dev/ttyS0
Com2=/dev/ttyS1
Com3=/dev/modem,38400
Com4=/dev/modem

27

Chapter 5. Implementation

;
; parallel port(s) used by "LPT1" etc. Useful for applications that try to
; access these ports.
;
[parallelports]
Lpt1=/dev/lp0

;
; What spooling program to use on printing.
; Use "|program" or "filename", where the output will be dumped into.
;
[spooler]
LPT1:=|lpr
LPT2:=|gs -sDEVICE=bj200 -sOutputFile=/tmp/fred -q -
LPT3:=/dev/lp3

;
; Allow port access to WINE started by the root user. Useful for some
; supported devices, but it can make the system unstable.
; Read /usr/doc/wine-cvs-xxxxx/ioport-trace-hints.
;
[ports]
;read=0x779,0x379,0x280-0x2a0
;write=0x779,0x379,0x280-0x2a0

; debugging, not need to be modified.
[spy]
Exclude=WM_SIZE;WM_TIMER;

;
; What names for the registry datafiles, no need to modify.
;
[Registry]
; Paths must be given in /dir/dir/file.reg format.
; Wine will not understand dos file names here...
;UserFileName=xxx ; alternate registry file name (user.reg)

28

Chapter 5. Implementation

;LocalMachineFileName=xxx ; (system.reg)

;
; Layout/Look modifications. Here you can switch with a single line between
; windows 3.1 and windows 95 style.
; This does not change WINE behaviour or reported versions, just the look!
;
[Tweak.Layout]
;; WineLook=xxx (supported styles are ’Win31’(default), ’Win95’, ’Win98’)
WineLook=Win95

;
; What programs to start on WINE startup. (you should probably leave it empty)
;
[programs]
Default=
Startup=

; defunct section.
[Console]
;XtermProg=nxterm
;InitialRows=25
;InitialColumns=80
;TerminalType=nxterm

</wineconf>

29

Chapter 6. Work to be done
In preparing this document, it became clear that there were still a range of action items
to be done in Wine that would improve this packaging process. For lack of a better
place, I record them here.This list is almost certain to be obsolete; check bugzilla for a
better list.

1. Remove duplication of code between winecfg and wineconf/wineinstall.

Currently, winecfg duplicates all of the code contained in wineconf.

Instead, wineconf should be improved to generate the new style config file, and
then winecfg should rely on wineconf to generate the default configuration file.

Similarly, there is functionality such as creating the default registry files that is
now done by both winecfg and wineinstall.

At this time, it seems like the right thing to do is to break up or parameterize
wineinstall, so that it can be used for single function actions, and then have
winecfg call those functions.

2. Enhance winecfg to support W: drive generation.

The best practices convention now seems to be to generate a set of drives from M:
through W:. At this point, winecfg does not generate a default wine config file that
follows these conventions. It should.

3. Enhance Wine to allow more dynamic switching between the use of a real
Windows partition and an empty one.

4. Write a winelauncher utility application.

Currently, Wine really requires a user to launch it from a command line, so that the
user can look for error messages and warnings. However, eventually, we will want
users to be able to launch Wine from a more friendly GUI launcher. The launcher
should have the ability to allow the end user to turn on debugging messages and

30

Chapter 6. Work to be done

capture those traces for bug reporting purposes. Also, if we make it possible to
switch between use of a Windows partition or not automatically, that option should
be controlled here.

5. Get Marcus’s winesetup facilities into CVS

Along the lines of the changes to winecfg, and the consolidation of wineconf and
wineinstall, we should extract the good stuff from Marcus’s winesetup script, and
get it into CVS. Again, perhaps we should have a set of scripts that perform
discrete functions, or maybe one script with parameters.

6. Finish this document

This document is pretty rough itself. Many hard things aren’t addressed, and lots of
stuff was missed.

31

